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Abstract

This supplemental appendix includes additional results and technical details omitted from the main
text. Section S.1 discusses primitive conditions of some high-level assumptions introduced in the
paper. Section S.2 provides technical details regarding our simulation study, including a description
of how we approximate the asymptotic distributions. Section S.3 presents detailed results of our

empirical application with network data.

S.1 Online Appendix—Proofs

S.1.1 Consistency of Plug-in Estimators

We impose lower-level assumptions that result in a consistent plug-in estimator. For notational ease,
we omit y,, and X,, in Q, (0, y,, X,, B) and we simply write Q,,(8, B). We also write ¢,;(8, 3;)

instead of ¢(0, y;, x;, 3;). Forany 8 € ® and a, 7 > 0, we define

ey _ |QZ(05 ﬁz) - QZ(97 IBO,i)|
i(a’T) - Sup|‘/31‘_50,i“<7' H/@ _ /80 .

a 7

where ||.|| is the £>-norm.

Assumption S.1 (Primitive Conditions for Assumption 2.3).
(i) © is a compact subset and 0 is an interior point of ©.

(ii) The function Q,,(0, By) converges uniformly in probability (across @ € ©) to a nonstochastic function
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Qo(0) that is maximized only at 0.

(iii) For any @ € ©, there exists constants a(0), 7(60) > 0, such that, max; H;(a(0),7(0)) = Op(1).

(iv) There exists a sequence of neighborhoods O(Bg 1), ..., O(By,,), such that deqi(6, B;) is Op(1), uni-
formly across @ € ©, B; € O(B, ;) and i, that is, maxgco, g,c0(8, ,), i<n |09 (0, B;)| = Op(1).

The compactness restriction in Condition (i) allows for the plug-in estimator to converge in its sup-
port. Condition (ii) is a classical identification condition also required for a standard M-estimator.
Importantly, this condition does not involve the estimator B,,. It is an identification condition that is
set at the true By. Condition (iii) implies that |¢;(6, 3;) — ¢:(0, Bo,;)| < |IB; — 607i||a(9)0p(1) for all 4
and ||8; — Byl < 7(0). A similar assumption is also imposed by Cattaneo et al. (2019) and requires
q:(0, B;) to be smooth in 3,. We use this condition and the uniform convergence of flm (Assumption
2.1) to show that @, (0, B,) — Q.(8, Bg) converges in probability to 0 for each . Condition (iv)

allows us to generalize this point-wise convergence to a uniform convergence.'
Proposition S.1. Under Assumptions 2.1, 2.2, and S.1, the estimator ,, converges in probability to 6.

Proof. The proof is performed in two steps.

Step 1: We show that Q,,(0, B,,) converges uniformly in probability to Qo ().

For any 6, we have |Q,,(8, By) — Qo(6)| < |Qn (6, B,) — Qu(6, Bo)| + |Qn(6, Bo) — Qo(6)|. Since

Qn (6, Bg) — Qo(0) converges uniformly in probability in 8 to 0 (Condition (ii) of Assumption S.1), it

is sufficient to show that @, (6, En) — Qn (0, By) also converges uniformly in probability in € to 0.
By Assumption 2.1, for n large enough, miaXH ,@n,i — Byl < 7(8) with probability approaching

one. Thus, by Condition (iii) of Assumption S.1,
|4: (0, Bn,i) - qi(0, /Bo,i)| < |‘ﬁnz - 50,1”‘109) miaXHi(a(H),T(G)) for all i
with probability approaching one. As |Q,,(8, B,,) — Q,.(8, Bo)| < max;|¢(8, Bm) —qi(0, By )|, this
implies that
|Qu (8. Br) — Qu(6, Bo)| < max||B; — By ;| **” max Hi(a(8),7(6))

with probability approaching one. As a result Q,,(6, B,) — Q.(8, By) converges in probability to
zero because max;||3; — 6071-”“(9) = 0p(1) and max; H;(a(@),7(0)) = Op(1).
To show that the convergence is uniform, we apply the mean value theorem to Q, (8, B,) —

Q.(8, By) with respect to 6. For any 6 € ©, we have
Qn(0, By) — Qu(6, Bo) — (Qn(9, Bn) — Qu(6, Bo)) = (0 -6)Q,,

INote that dgq; (0, B;) is be bounded in probability for each i as it must have finite moments. Consequently, one can find
a neighborhood O(B, ;) such maxgce, 3,c0(3, ;)1062: (0, B;)| is bounded in probability. The additional requirement of

Condition (iv) is that the bound is uniform across i as n grows to infinity.



where Q,, = 1 377" | 06(¢:(0;), B,.:) — ¢:(6), By,)), for some 0] that lies between @ and 6. Thus,

),
|Qu(6, B) — Qu(6, Bo) — (Qu(6, B) — Qu(6, Bo))| < [Q,]1[16 - 8]
As Qn = O,(1) (Condition (iv) of Assumption S.1) and © is compact, it follows from Lemma 2.9 of
Newey and McFadden (1994) that Q,,(6, Bn) — Qn (6, By) converges uniformly in probability to 0.

Step 2: We establish the consistency of the estimator 6,,.

Let O(6))° be the complement of O(6y) in ®. Note that O(6)° is nonempty and compact and
maxgeo(g,): Qo(0) exists. Let § = Qo(By) — maxgeo(a,)- Qo(0) and J,, = {|Q.(8, B,) — Qo(0)] <
§/2, forall 8}. We know that Qy(0) is uniquely maximized at 6, and that 6, ¢ O(6,)°. Thus § > 0.

Moreover, since @, (0, Bn) converges uniformly in probability to QO(O), we have limP(J,,) = 1.

I = {QO( ) > Qn(emB — 5/2} N {Qn 6o, B n) > Qo(0o) 5/2} (S.1)
As @, = argmaxy Q, (0, B,,), wealsohave Q,,(0.., B,) = Q.(60, B,,). Thus, {Qo(8,) > Q,.(0.,,B,,)—
5/2} implies {Qo(8,) > Qu (80, B —5/2}. Tt follows from (S.l)that

Jn = {Qo(6,) > Qu(00,B,) —6/2} 1 {Qn(60, B,) > Qo(60) — 6/2},

Jo = {Qo(8.) > Qo) 5} S.2)

As § = Qo(00) — maxgeo(a,)c Qo(0), it turns out from (S.2) that

T = {Qo(6,) > eer(rgl(aerz)cQo(@)},

J, = 6, €0(0). (S.3)
AslimP(.J,,) = 1, then (S.3) implies that lim P(,, € O(8)) = 1. This is true for any open subset O(8;)

that contains 8. As a result, 8,, converges in probability to 6. O

S.1.2 Primitive Conditions for Assumption 4.2

For notational ease, let §;(0, B;) = 0od9'q(0, yi, xi, 3;). Forany 8 € ® and a, 7 > 0, we define

H _ HQZ( ) ql(007 /30 1,)”
(0:7) = SUPU10-00l18: 800" < (g g, | + 113, — Bo)*

We impose lower-level conditions that imply Assumption 4.2.

Assumption S.2 (Primitive Conditions for Assumption 4.2).
(i) The matrix £ 37" | Gi(60, By ;) converges in probability to a finite nonsingular matrix A defined by
limE(% 22;1 Gi (8o, /30,1))-

(ii) There exists constants a*, 7% > 0 such that max; H;(a*, 7%) = O,(1).

Condition (i) imposes that % > Gi(6o, By i) converges in to lim ]E(% S Gi(00, ﬁO,i))' This condition
is classical as in the case of a single-step estimator. It does not involve any estimator and can be

implied by the weak law of large numbers (WLLN). For ¢;(6o, B, ;)’s dependent across i, WLLN for



dependent processes can be used. Condition (ii) is similar to Condition (iii) of Assumption S.1. It

requires ¢; (6, 3;) to be smooth in both 3, and 8, uniformly in .

Proposition S.2. Under Assumptions 2.1,2.2,2.3, 5.1 and S.2, the Hessian of the objective function evaluated
at any consistent estimator 6, given by £ 7" G;(6;, Bn’i), converges in probability to a finite nonsingular
matrix Ag = imE (L Y™ | G;(6o, ﬂw)).

Proof. By Assumption 2.1, for n large enough, ||0," — 6] + m?xH ﬁn’i — Byl < 7* with probability
approaching one. Thus, [1G:(8;;, B,,;) — (60, Bo.)| < (107 = ol + 1B, ; = Boi)*” max; Hi(a*, 7%),
for all 4, with probability approaching one.

As |5 X1 @07, Bri) — 5 Dis1 @00, Bo,)ll < maxillG(6;, By,) — (6o, Byl it follows that
15 X571 (8, Br) — % i1 @i(Bo, Bo )l < (167 — 6ol +max;||B,, ; — Boill)*" max; Hi(a*, 7*) with
probability approaching one, where [|0;) — 8o|| + max;||8; — B ;]|*® = 0,(1) and max; H;(a*,7*) =
O,(1). Asaresult, 23" | G;(6), ,Bm) — L3 1 Gi(B0, By;) = op(1). Given that L 37" (60, By,)

converges in probability to a finite nonsingular matrix A, the result follows. O

S.2 Supplementary Materials on the Simulation Study

This section provides a detailed explanation of the method used to estimate the asymptotic vari-
ance and the asymptotic cumulative distribution function (CDF) of the plug-in estimators in the
simulation study. Our replication code available at https://github.com/ahoundetoungan/
InferenceTSE implements this method. We also present the estimates of the asymptotic CDF of

the debiased estimators.

S.2.1 Asymptotic Variance and Asymptotic CDF

DGPs A and B

DGP A is a treatment effect model with endogeneity. The model is defined as follows:
yi = Ood; + €5, d; = 1{z; > 0.5(¢; +1.2)}, 2z ~ Uniform[0, 1], &; ~ Uniform[—1,1],

where d; is a treatment status indicator, z; is an instrument for the treatment and 6y = 1. In the first
stage, we perform two OLS regressions: a regression of y; on z; = (1, 2;)’ and another regression of
d; on z;. For DGP B, the vector of regressors in the first stage is z; = (1, 214, -, 2k, )’

Let 4 '7 ) and '7 ) be the respectlve OLS estimators and let 4,, = (¥, W) 5 (d)')’ be the joint first-
stage estimator. Let also l/i(' and o 1/ ) be the residuals of the regressions; that is, o (U) yi — 24 and
ﬁi(d) = d; — 24D, We define zE") = (Z/i(y)z’ A(d) z;)'. The estimator of the asymptotic distribution of

4,, is a normal distribution with mean ¥, and covariance matrix V(¥,,) = %H; 13,81, where

H, = 130 diag(X, zi2), Xy 2i2) and 3, = 230 22
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The notation diag stands for the bloc diagonal matrix operator In the second stage, the objective func-
tion to be maximized is Qn(e Yn, By) = —L3 (= l'yn —0z/4 5D)2 where B,, = (6n Ly «ves ,E)'n )
and Bm = (2] '7519), 2! '7 ) This implies that qn(yn7 n) f I zlfygld)(z 'yny) 0oz’ 'y(d)) We

define the following expressions:

An = l2?=1(z{£;?5’bd))2 and gAn,s = f Zz 1% 7nd S)( 27(1/ %) 9 zg’ygbd 8))5
where (@1, 4Dy (gs g dmne Bid s (5). Let b, . = X’“‘. The asymptotic
CDF of y/n(6,, — 6y) can be estimated by the empirical CDF of the sample: {1, s, s = 1, ..., x}. The

estimator of the asymptotic variance of én is

S (Ens — E(E))?
n(k —1)A2

where E(E,) = D &n.s- The debiased estimator is given by
0 . = b —E(&,)/(VnAy).
2 ) where A*, £*  and E(E¥) are defined as A, £, ,, and E(E,,), respectivel h
A% ’ n’s “n,s’ ns Cn,ss pectively, wit
the difference that they are computed using 6} . and not 0,,. We can estimate the asymptotic CDF of
Vn(0 . — 6o) by the empirical CDF of the sample {4 =1, ..., K}

V(én) =

)

Letoy , =

n,s’

DGP C
DGP C is a Poisson model with a latent covariate that is defined as:

y; ~ Poisson(exp(fy 1 + 0o2p;)), pi =sin®(7z;), 2 ~ Uniform[0, 10], d; ~ Bernoulli(p;),
where p; is an unobserved probability and 6y = (6y,1, 0o,2)" = (0.5, 2). The practitioner observes the
pairs (y;, z;) for all i but only observes d; for a representative subsample of size n* < n. In the first
stage, p; = E(d;|#;) is estimated using a generalized additive model (GAM) of d; on z; in the subsam-
ple of size n* where d; is observed. The GAM involves approximating p; by piecewise polynomial
functions of z;.> We consider cubic polynomial functions on the intervals [0, 0.5], ..., [9.5, 10]. This
approach can thus be regarded as an OLS regression of d; on numerous explanatory variables called
bases, which are computed from z;. We can write p; = h(z;, ¥,,), where h is a piecewise cubic poly-
nomial function and #,, is the OLS estimator. The regression results can be used to compute p; for
any 4 in the full sample because we observe z; of all i. The estimator of the asymptotic distribution of
4,, is a normal distribution with mean 4,, and the standard OLS variance denoted V(6,,).

In the second stage, we perform a maximum likelihood (ML) estimation by assuming that y;
follows a Poisson distribution with mean exp(ﬁ/ ,0), where Bn’i = (1, p;). The objective function

is thus given by Q,,(6o, yn, Bn) = * eI (yzﬁn 0 — exp(ﬁim-e)) and q,,(yn, B,) = ﬁzyﬂ (yi —

2Gee HASTIE, T. J. (2017): "Generalized additive models," in Statistical models in S, Routledge, 249-307.




exp(B ;- Therefore,

~/

00))B.,
A = L Z" 1 exXp (lé;’L zé )Bn 7.Bln KR vn = %Z?:l exp (/Bn,l
5

- Zl  (exp(BY) 8,) — exp(BL)0,)) B0

where /@n,i = h/(Z“ n ) for s = 1 - Ky and s’n Tt ;757,%) K Z ¢ N(f)ln, V(S”n))
Let 1,5,1 s = A*1V1/2C + A;'E, ., where ¢y, ..., ¢, LN N(0, Ik,). The asymptotic CDF of

(8, — 6y) can be estimated by the empirical CDF of the sample: {’l,bn s s =1, ..., k}. The

asymptotic variance of ,, is estimated by
~ A K A

oA A1 AT
(6,) - 2e=nBe

n
where XA]Z =V, + L Z'::l(én,s - Q:)(S’ns -, ) and QZ =iy &n.s- The debiased estimator is
given by

az,n = én - Ar_zlﬂf;/\/ﬁ

Let 1[1:5 = (AX)"Y VIV, + (AR)7L(Ex, - "), where A%, V¥, &, and Q" are respectively

defined as A,,, V,,, éA’n,S, and Q:, with the difference that they are computed using 0* and not 6,,.
We can estimate the asymptotic CDF of y/n (é — 6y) by the empirical CDF of the sample: {¢
1, ..., K}

n,s?

DGP D

DGP D is a copula-based multivariate time-series model. We consider k,, returns y1,;, ..., Yk, i,
where i is time and k,, > 2. Each y,;, for p = 2, ..., k,, follows an AR(1)-GARCH(1, 1) model, such
that

2 2 2 2
Yp,i = &p,0 + Pp1Ypi—1 + Opi€pis  Op; = Bpo+ Bp10p i 1651+ Bp20pi 1,

where ¢, 0 = 0, ¢pi—1 = 0.4, Bpo = 0.05, 8,1 = 0.05, 8,2 = 0.9, and ¢, ; follows a standardized
Student distribution of degree-of-freedom v, = 6. We account for the correlation between the re-
turns using the Clayton copula. The joint density function of y; = (y14, ..., ¥p.)" conditional on
F~1is given by Ci(Gl,i(ﬁO,l)a . Gkn,z(ﬂo,kn)a 0o), where Bo,p = (6p,0s p,15 Bp,os Bp,1s Bp2s vp),
Gp.i(By ) is the CDF of y, ; conditional on F*~!, and ¢; is the probability density function (PDF) of
k,-dimensional Clayton copula of parameter 6y = 4. A multi-stage estimation strategy can be used to

estimate 0. In the first k,, stages, we separately estimate each 3, , by applying an AR(1)-GARCH(1,

1) model to the sample y,, 1, ..., Yp.n-
Bn,p = arg maXﬁp gp = % ZZL:l log g[),l(ﬁp) 5 for p=1,..., kn s
—_—
Cyi
where g, ;(3, ,) is the PDF of y, ; conditional on 7 ~!. Let 3,, be the estimator 8, := (81, - .-, Bi,)"-

The estimator of the asymptotic distribution of 3,, is a normal distribution with mean 3,, and variance



given by V(3,,) = %ﬂ 13,81, where

=137 | diag( B,wel i e (mﬁek @) and 3, = Viac(gz X0, 0l s Ol i)) -
The notation Viac is the heteroskedasticity and autocorrelation consistent (HAC) covariance matrix
to account for the serial correlation.’ In the HAC approach, we use the quadratic spectral kernel and
set the bandwidth to 2n!/3. The gradient and the Hessian of the likelihood £, ; do not have a closed
form. Fortunately, they can be approximated numerically in most statistical software.

In the last stage, we estimate 6, by ML after replacing 3, in the density function of y; with 3,,. Let
ni(0, Br) =1log (¢;(G1,i(Bpr)s -+ Groi( Bk, ) 0)), where log c;(us, ..., u,,0) = X7 " log(pf +
1) —(0+ 1)2’;;1 logu, — (ky + )log(zp"1 p — k, + 1) . The objective function is @, (9, B,) =
%ZZL:I qn.i (0, ﬁn) To compute 0pqy,; (6o, Bn) and a/ﬁqmi(eo’ ﬁn), we need the first and second

derivatives of log ¢; (us1, ..., u,,0) that can be expressed as follows:
K, —0
. ka1 p En log(S47 un®—kn+1) | (kat3) S5, uy % loguy,
Ogplogc;(uy, ..., ug,,0) = szl T~ Zp:l logu, + 52 + ST
1 k 2 1 k 2
(kn+ nouw>flogu kn+5 n logu kn
("’6‘2 logcz(ul, "'7ukn79): L k)( = 1 o P) _( - elznzp . .t 2k _Z 1 9p1 -
(anl k?n+1) Zp_l - —kn+1 P po+
sz lu Blogup _ 210g(217 1 Uy Ok +1)
02(5my up®—kn+1) 63 ’

We define the following expressions: A, = % > %qn,i(én, ﬁn),

9 n hoA 5 n i Aa0s) 5(1) 5(K) 4. z
Vn = VHAC(% Zi:l BGQn,i(enaﬂn))/ and gn,s = % 27;:1 6GQn7i(9na /Bn )r where ﬂn IR /6 ¢
N(B,, V(B,)). Let ¢, s = %, where (3, ..., (. are independent variables from N(0,1). The
asymptotic CDF of v/n(f,, — 6) can be estimated by the empirical CDF of the sample: {t),, ., 5 =

1, ..., r}. The estimator of the asymptotic variance of 6, is
V() = - (Vo + 25 20 s — BEE),

where ]E(En) = % Zle f:'n,s. The debiased estimator is given by

05 . = On — B(E,)/(v/nAy).
Letw VUG +er BED , where A*, V*, £*

A* n,s’

and ]E(S;f) are defined as A,,, V,,, é'nys, and ]E(Sn),

respectlvely, with the difference that they are computed using ¢} . and not 0,,. We can estimate the

asymptotic CDF of /n(0}; .. — 0) by the empirical CDF of the sample: (Pns, s=1, ..., K}.

S.2.2 Estimates of the Asymptotic Distribution of the Debiased Estimators

This section presents the estimates of the asymptotic CDF of A% | := /n(8}, . — o), where 6, _ is the
debiased estimator. In contrast to the case of the classical plug-in estimator, the true sampling CDFs

are asymptotically centered at zero because E(A}; ) converges to zero asymptotically. Overall, the

3See ANDREWS, D. W. (1991): "Heteroskedasticity and autocorrelation consistent covariance matrix estimation," Economet-
rica: Journal of the Econometric Society, 59, 817-858.



results demonstrate that the estimator of the CDF of A} , as outlined in Theorem 4.3, performs well.

DGP A
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Figure S.5: Monte Carlo Simulations: Estimates of asymptotic CDFs (DGPs A and B)

This figure displays average estimates of the asymptotic CDF of 1/n(8}; . — o) for DGPs A and B. F{f* represents the true sam-
pling CDF whereas ¥ corresponds to the average estimate of the CDF using our simulation approach. The L;-Wasserstein
distance between each estimated CDF and F{ is enclosed in parentheses.



Probability

Probability

Probability

Probability

DGP C

N
J(8,1—604), N = 250, n* = 250

N
(8,1~ 801), N =500, n* = 455

N
A1 (8,1—601), N =1,000, n* = 684

VAT (8, ~851), n = 2,000, n* = 1,009

1.00

0.754

0.50

0.25+

0.00 4

_FO

e
== F,(0.224)

_FO

o
- = F,(0.147)

_FO

e
== F,(0.097)

_FO

o
== F,(0.058)

-10 -5

oA
5
=
o

10 -5 0 5 10

-10 -5

oA
3
=
o

-10 -5

o
(92}

10

"/ﬁ(anz —602), N = 250, n* = 250

'/ﬁ(/én.z —802), N =500, n* = 455

’/ﬁ(é\n.z -852), N = 1,000, n* = 684

VA (8,,-85,), n = 2,000, n* = 1,009

1.00

0.754

0.50 4

0.254

0.00

—F;

-
== F,(0.400)

—F;

o
- = F,(0.211)

_F;

o
- = F,(0.127)

[
=
S}
1
o
oA
3
=
S

o -
w
=
o

-10 -5

-10 -5

oA
o
=
S

DGP D: Mean Correction

o -
[6)]

-10 -5 10

Yii(log(8,) —log(8,)). n = 500, k, = 3

Yii(log(8,) —l0g(8y)). n = 1,000, k, = 5

vi(log(8,) ~10g(8o)), n = 2,000, k, = 8

0.754

0.50

0.25+

0.00 -

—F;

o
- = F,(0.967)

_Fg

o
- = F,(0.223)

_F;

o
== F,(0.067)

DGP D: Median Correction

YA(log(8,) ~1og(65)). n = 500, ky = 3

YA(log(8,) ~10g(8,)). n = 1,000, k, = 5

Vi (log(8,) ~10g(8,)), n = 2,000, k, = 8

0.75+

0.50

o

)

o
L

0.00

_F;

o
-~ F,(0.690)

—F;

o
- = F,(0423)

—F;

o
- = F,(0.179)

—F;

o
- = F,(0.061)

Figure S.6: Monte Carlo Simulations: Estimates of asymptotic CDFs (DGPs C and D)

This figure displays average estimates of the asymptotic CDF of /n(63% ., — o) for DGPs A and B. F{' represents the true sam-
pling CDF whereas F* corresponds to the average estimate of the CDF using our simulation approach. The L1-Wasserstein

distance between each estimated CDF and F{ is enclosed in parentheses.




S.3 Supplementary Materials on the Application

S.3.1 Data Summary

Our dependent variable is the weekly fast-food consumption frequency, measured by the reported
frequency (in days) of fast-food restaurant visits in the past week. We control for 25 observable char-
acteristics in X, such as students’ gender, grade, race, weekly allowance, and parent’s education and

occupation. On average, students report consuming fast food 2.35 days per week. (see Table S.1).

Table S.1: Data Summary

Statistic Mean  St. Dev. Min Max
Fast food consumption 2.353 1.762 0 7
Female 0.501 0.500 0 1
Age 16.628 1.554 12 21
Hispanic 0.200 0.400 0 1
Grade 7-8 0.100 0.300 0 1
Grade 9-10 0.230 0.421 0 1
Grade 11-12 0.533 0.499 0 1
Race (White)
Black 0.142 0.349 0 1
Asian 0.138 0.345 0 1
Other 0.117 0.321 0 1
With parents 0.675 0.468 0 1
Allowance per week 7.893 11.609 0 95
Mother Education (High school)
< High school 0.146 0.353 0 1
> High school and not graduated 0.173 0.378 0 1
> High school and graduated 0.226 0.418 0 1
Missing 0.124 0.330 0 1
Father Education (High school)
< High school 0.124 0.329 0 1
> High school and not graduated ~ 0.137 0.344 0 1
> High school and graduated 0.202 0.402 0 1
Missing 0.284 0.451 0 1
Mother Job (None)
Professional 0.157 0.364 0 1
Other 0.623 0.485 0 1
Missing 0.088 0.283 0 1
Father Job (None)
Professional 0.053 0.223 0 1
Other 0.663 0.473 0 1
Missing 0.240 0.427 0 1

This table presents the mean, standard deviation (St. Dev.), minimum, and maximum of the
variables used in the empirical application. For the categorical explanatory variables, the
level in parentheses is set as the reference level. "With parents" is a dummy variable taking 1
if the student lives with their mother and father.

S.3.2 Estimation and Inference

The following table displays the full results of estimations of the peer effect model.
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Table S.2: Estimation Results: OLS approach

Fixed Effects No Yes
Coef Sd. Err Coef Sd. Err

Peer effects: 0y 1 0.192 0.031 0.150 0.032
Individual characteristics: 09,2
Female —0.158 0.075 —0.161 0.074
Age 0.109 0.040 0.083 0.040
Hispanic 0.289 0.130 0.103 0.147
Grade 7-8 —0.033 0.257 0.102 0.260
Grade 9-10 0.020 0.168 0.020 0.169
Grade 11-12 0.258 0.116 0.205 0.117
Race (White)

Black 0.075 0.145 —0.085 0.167

Asian 0.302 0.144 0.134 0.167

Other —0.118 0.138 —0.145 0.139
With parents —0.001 0.134 0.002 0.134
Allowance per week 0.008 0.003 0.006 0.003
Mother Education (High school)

< High school 0.101 0.119 0.084 0.119

> High school and non graduated 0.054 0.100 0.023 0.100

> High school and graduated 0.132 0.106 0.086 0.106

Missin —0.035 0.191 —0.103 0.190
Father Education (High school)

< High school —0.251 0.128 —0.244 0.127

> High school and non graduated =~ —0.100 0.112 —0.112 0.112

> High school and graduated —0.005 0.109 —0.038 0.110

Missing 0.016 0.186 —0.024 0.186
Mother Job (None)

Professional 0.015 0.133 —0.007 0.133

Other 0.065 0.101 0.061 0.101

Missing 0.376 0.227 0.441 0.226
Father Job (None)

Professional —0.247 0.224 —0.281 0.223

Other —0.230 0.165 —0.234 0.164

Missing —0.252 0.250 —0.228 0.250
Contextual peer effects: 0¢ 3
Female 0.044 0.120 —0.001 0.121
Age —0.030 0.022 —0.008 0.023
Hispanic —0.091 0.195 —0.189 0.203
Grade 7-8 —0.268 0.274 —0.281 0.277
Grade 9-10 —0.189 0.209 —0.107 0.209
Grade 11-12 —0.028 0.189 0.028 0.188
Race (White)

Black 0.165 0.198 0.129 0.206

Asian —0.118 0.187 —0.122 0.196

Other —0.511 0.228 —0.470 0.228
With parents —0.199 0.216 —0.230 0.218
Allowance per week 0.006 0.005 0.003 0.005
Mother Education (High school)

< High school 0.417 0.196 0.359 0.196

> High school and non graduated = —0.163 0.170 —0.226 0.171

> High school and graduated —0.065 0.178 —0.189 0.180

Missing —0.288 0.373 —0.386 0.372
Father Education (High school)

< High school —0.090 0.216 —0.111 0.217

> High school and non graduated 0.140 0.176 0.084 0.179

> High school and graduated 0.093 0.177 0.052 0.182

Missing 0.289 0.324 0.278 0.324
Mother Job (None)

Professional —0.217 0.223 —0.246 0.224

Other —0.249 0.171 —0.272 0.172

Missing —0.193 0.427 —0.105 0.428
Father Job (None)

Professional 0.484 0.370 0.111 0.376

Other 0.368 0.268 0.238 0.274

Missing 0.044 0.424 —0.116 0.430

For the categorical variables, the level in parentheses is set as the reference level.
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Table S.3: Estimation Results: Classical and Optimal GMM approaches

Model CIv CIv ()\% OIvV
Fixed Effects No Yes No Yes
Coef Sd. Err Coef Sd. Err Coef Sd. Err Coef Sd. Err

Peer effects: 6p,1 0.149 0.160 0.081 0.169 —0.065 0.287 0.016 0.208
Individual characteristics: 69,2
Female —0.156 0.075 —0.158 0.075 —0.145 0.077 —0.154 0.075
Age 0.111 0.040 0.085 0.040 0.121 0.042 0.087 0.041
Hispanic 0.288 0.130 0.095 0.148 0.284 0.132 0.088 0.149
Grade 7-8 —0.033 0.258 0.105 0.260 —0.035 0.261 0.108 0.261
Grade 9-10 0.019 0.168 0.018 0.169 0.017 0.171 0.016 0.169
Grade 11-12 0.258 0.116 0.203 0.117 0.261 0.118 0.201 0.117
Race (White)

Black 0.073 0.145 —0.091 0.168 0.066 0.147 —0.097 0.168

Asian 0.305 0.144 0.133 0.167 0.318 0.147 0.132 0.167

Other —0.123 0.139 —0.153 0.141 —0.144 0.142 —0.160 0.142
With parents —0.008 0.136 —0.006 0.135 —0.042 0.143 —0.015 0.137
Allowance per week 0.008 0.003 0.006 0.003 0.008 0.003 0.006 0.003
Mother Education (High school)

< High school 0.102 0.120 0.085 0.119 0.110 0.121 0.087 0.119

> High school and not graduated 0.057 0.100 0.025 0.100 0.070 0.103 0.026 0.101

> High school and graduated 0.131 0.106 0.082 0.107 0.128 0.108 0.079 0.107

Missing —0.045 0.194 —0.121 0.195 —0.094 0.204 —0.138 0.198
Father Education (High school)

< High school —0.252 0.128 —0.246 0.127 —0.260 0.130 —0.247 0.128

> High school and not graduated =~ —0.100 0.112 —0.113 0.112 —0.101 0.113 —0.114 0.112

> High school and graduated —0.006 0.109 —0.040 0.111 —0.011 0.111 —0.042 0.111

Missing 0.019 0.187 —0.020 0.186 0.037 0.190 —0.017 0.186
Mother Job (None)

Professional 0.011 0.134 —0.014 0.134 —0.009 0.137 —0.021 0.135

Other 0.066 0.101 0.061 0.101 0.069 0.103 0.061 0.102

Missing 0.381 0.228 0.452 0.228 0.404 0.232 0.463 0.229
Father Job (None)

Professional —0.242 0.224 —0.278 0.224 —0.219 0.228 —0.274 0.224

Other —0.225 0.165 —0.228 0.165 —0.203 0.169 —0.222 0.166

Missing —0.255 0.251 —0.230 0.250 —0.267 0.254 —0.231 0.251
Contextual peer effects: 6¢ 3
Female 0.037 0.123 —0.013 0.124 0.003 0.130 —0.024 0.126
Age —0.025 0.029 0.001 0.031 0.000 0.040 0.009 0.034
Hispanic —0.075 0.203 —0.169 0.209 0.002 0.222 —0.150 0.213
Grade 7-8 —0.264 0.274 —0.273 0.278 —0.246 0.278 —0.266 0.279
Grade 9-10 —0.186 0.209 —0.099 0.210 —0.174 0.212 —0.092 0.211
Grade 11-12 —0.011 0.199 0.056 0.201 0.073 0.222 0.083 0.207
Race (White)

Black 0.172 0.199 0.141 0.208 0.205 0.205 0.153 0.209

Asian —0.106 0.192 —0.101 0.202 —0.047 0.205 —0.082 0.206

Other —0.519 0.230 —0.483 0.230 —0.560 0.237 —0.495 0.232
With parents —0.212 0.221 —0.247 0.222 —0.276 0.235 —0.264 0.224
Allowance per week 0.007 0.006 0.004 0.005 0.009 0.006 0.004 0.006
Mother Education (High school)

< High school 0.420 0.197 0.359 0.196 0.438 0.200 0.359 0.197

> High school and not graduated =~ —0.159 0.170 —0.223 0.172 —0.139 0.174 —0.220 0.172

> High school and graduated —0.053 0.184 —0.178 0.182 0.010 0.199 —0.168 0.184

Missin, —0.264 0.383 —0.351 0.382 —0.146 0.409 —0.319 0.387
Father Education (High school)

< High school —0.112 0.231 —0.144 0.231 —0.223 0.264 —0.175 0.239

> High school and not graduated 0.124 0.186 0.054 0.193 0.043 0.209 0.025 0.201

> High school and graduated 0.082 0.181 0.035 0.186 0.029 0.192 0.020 0.189

Missing 0.282 0.325 0.265 0.326 0.251 0.331 0.254 0.327
Mother Job (None)

Professional —0.225 0.225 —0.262 0.227 —0.265 0.232 —0.276 0.229

Other —0.245 0.172 —0.268 0.173 —0.227 0.175 —0.265 0.173

Missing —0.209 0.431 —0.125 0.431 —0.286 0.445 —0.144 0.433
Father Job (None)

Professional 0.501 0.375 0.119 0.377 0.587 0.392 0.125 0.378

Other 0.382 0.273 0.256 0.277 0.452 0.287 0.273 0.280

Missing 0.061 0.429 —0.091 0.434 0.146 0.444 —0.067 0.438

For the categorical variables, the level in parentheses is set as the reference level.
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Table S.4: Estimation Results: Many Instrument Approaches

Model IV-MI IV-MI DIV-MI DIV-MI
Fixed Effects No
Coef Sd. Err Coef Sd. Err Coef Sd. Err Coef Sd. Err

Peer effects: 6p,1 0.276 0.063 0.208 0.067 0.300 0.063 0.218 0.067
Individual characteristics: 69,2
Female —0.162 0.072 —0.164 0.070 —0.163 0.072 —0.165 0.070
Age 0.105 0.038 0.082 0.038 0.104 0.038 0.082 0.038
Hispanic 0.290 0.126 0.109 0.135 0.290 0.126 0.110 0.135
Grade 7-8 —0.032 0.252 0.100 0.241 —0.030 0.252 0.102 0.241
Grade 9-10 0.021 0.157 0.021 0.154 0.020 0.157 0.023 0.154
Grade 11-12 0.257 0.118 0.207 0.119 0.255 0.118 0.209 0.119
Race (White)

Black 0.078 0.147 —0.080 0.158 0.080 0.147 —0.078 0.158

Asian 0.297 0.134 0.135 0.151 0.296 0.134 0.136 0.151

Other —0.110 0.129 —0.138 0.128 —0.108 0.129 —0.135 0.128
With parents 0.012 0.128 0.010 0.127 0.016 0.129 0.011 0.128
Allowance per week 0.008 0.003 0.006 0.003 0.008 0.003 0.006 0.003
Mother Education (High school)

< High school 0.098 0.113 0.082 0.114 0.097 0.114 0.082 0.114

> High school and not graduated 0.048 0.093 0.022 0.093 0.047 0.094 0.021 0.093

> High school and graduated 0.133 0.095 0.089 0.094 0.134 0.095 0.089 0.094

Missing —0.015 0.179 —0.088 0.178 —0.008 0.179 —0.085 0.178
Father Education (High school)

< High school —0.248 0.114 —0.243 0.112 —0.247 0.114 —0.244 0.112

> High school and not graduated =~ —0.100 0.102 —0.111 0.102 —0.100 0.102 —0.111 0.102

> High school and graduated —0.003 0.103 —0.036 0.105 —0.004 0.103 —0.035 0.105

Missing 0.009 0.180 —0.027 0.179 0.007 0.180 —0.025 0.179
Mother Job (None)

Professional 0.023 0.122 —0.001 0.124 0.024 0.122 0.002 0.124

Other 0.064 0.093 0.060 0.095 0.063 0.093 0.062 0.095

Missing 0.366 0.216 0.432 0.213 0.362 0.216 0.429 0.213
Father Job (None)

Professional —0.256 0.192 —0.284 0.196 —0.261 0.192 —0.286 0.196

Other —0.238 0.136 —0.239 0.139 —0.241 0.137 —0.239 0.139

Missing —0.248 0.230 —0.227 0.231 —0.246 0.230 —0.226 0.231
Contextual peer effects: 6¢ 3
Female 0.058 0.111 0.010 0.112 0.062 0.111 0.013 0.112
Age —0.040 0.020 —0.015 0.021 —0.043 0.020 —0.016 0.021
Hispanic —0.121 0.167 —0.206 0.180 —0.129 0.167 —0.210 0.180
Grade 7-8 —0.275 0.241 —0.287 0.241 —0.279 0.241 —0.286 0.242
Grade 9-10 —0.194 0.179 —0.114 0.180 —0.193 0.179 —0.112 0.180
Grade 11-12 —0.061 0.171 0.003 0.173 —0.067 0.172 0.003 0.173
Race (White)

Black 0.152 0.190 0.119 0.197 0.147 0.190 0.113 0.197

Asian —0.141 0.173 —0.139 0.181 —0.149 0.173 —0.145 0.181

Other —0.495 0.177 —0.459 0.180 —0.489 0.177 —0.456 0.180
With parents —0.174 0.194 —0.215 0.198 —0.165 0.194 —0.215 0.198
Allowance per week 0.005 0.005 0.003 0.005 0.005 0.005 0.003 0.005
Mother Education (High school)

< High school 0.410 0.180 0.359 0.177 0.409 0.180 0.361 0.177

> High school and not graduated =~ —0.171 0.147 —0.229 0.146 —0.173 0.147 —0.228 0.146

> High school and graduated —0.090 0.161 —0.199 0.166 —0.096 0.162 —0.199 0.167

Missin, —0.335 0.351 —0.415 0.354 —0.345 0.352 —0.419 0.354
Father Education (High school)

< High school —0.046 0.182 —0.083 0.180 —0.031 0.183 —0.082 0.180

> High school and not graduated 0.172 0.155 0.110 0.158 0.184 0.156 0.115 0.158

> High school and graduated 0.113 0.157 0.065 0.163 0.122 0.158 0.065 0.163

Missing 0.301 0.241 0.288 0.243 0.308 0.241 0.289 0.242
Mother Job (None)

Professional —0.202 0.200 —0.233 0.201 —0.196 0.200 —0.231 0.201

Other —0.256 0.150 —0.276 0.153 —0.254 0.150 —0.275 0.153

Missing —0.163 0.385 —0.088 0.384 —0.150 0.386 —0.082 0.384
Father Job (None)

Professional 0.450 0.289 0.105 0.298 0.438 0.289 0.106 0.298

Other 0.341 0.187 0.223 0.199 0.332 0.187 0.219 0.198

Missing 0.010 0.322 —0.137 0.332 0.000 0.322 —0.142 0.331

For the categorical variables, the level in parentheses is set as the reference level.
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