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S.1 Additional Notes for the Proofs

S.1.1 Some Basic Properties

In this section, we state and prove some basic properties used throughout the paper.

P.1 Let rFs, ℓ̄s{
?
n̄s, ℓ̂s{

?
n̂ss be the orthonormal matrix of Js, where the columns in Fs are eigen-

vectors of Js corresponding to the eigenvalue one. ∥Fs∥2 “ 1, where ∥.∥2 is the operator norm

induced by the ℓ2-norm.

Proof. ∥Fs∥2 “ max
u1

sus“1

a

pFsusq1pFsusq “ max
u1

sus“1

a

u1
sus because F1

sFs “ Ins´2, the identity

matrix of dimension ns ´ 2. Thus, ∥Fs∥2 “ 1.

P.2 For any ns ˆ ns matrix, Bs “ rbs,ijs, |bs,ii| ď ∥Bs∥2.

Proof. Let us be the ns-vector of zeros except for the i-th element, which is one. Note that

∥us∥2 “ 1. The i-th entry of Bsu is bs.ii. As a result, |bs,ii| ď

b

řns

j“1 b
2
s,ji “

a

pBsuq1pBsuq ď

∥Bs∥2.

P.3 If Bs is a symmetric matrix of dimension ns ˆ ns, then ∥Bs∥2 “ πmaxpBsq, where πmaxp.q is the

largest eigenvalue.

Proof. ∥Bs∥2 “ max
u1

sus“1

a

pBsusq1pBsusq “ max
u1

sus“1

a

u1
sB

2
sus “

a

πmaxpB2
sq “ πmaxpBsq.

P.4 If Bs is a symmetric matrix of dimension ns ˆ ns, then πmaxpF1
sBsFsq ď πmaxpBsq.

Proof. πmaxpF1
sBsFsq “ max

u1
sus“1

u1
sF

1
sBsFsus “ max

u1
sus“1

pFsusq1BspFsusq. As pFsusq1pFsusq “ 1,

then max
u1

sus“1
pFsusq1BspFsusq ď max

u1
sus“1

u1
sBsus “ πmaxpBsq.

P.5 Let Bs,1 and Bs,2 be ns ˆns matrices. If Bs,1 and Bs,2 are absolutely bounded in row and column

sums, then Bs,1Bs,2 is absolutely bounded in row and column sums.

Proof. It is sufficient to show that the entries of Bs,1Bs,2us and u1
sBs,1Bs,2 are absolutely bounded

for all ns-vector us whose entries take ´1 or 1. Assume that Bs,1 is absolutely bounded in

row sum by Cb,1 and absolutely bounded in the row sum by Rb,1. Assume also that Bs,2 is

absolutely bounded in the row sum by Cb,2 and absolutely bounded in row sum by Rb,2. We

have Bs,2us ĺ Rb,21ns
and Bs,11ns

ĺ Rb,11ns
, where ĺ is the pointwise inequality ď and 1ns
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is an ns-vector of ones. Thus, Bs,1Bs,2us ĺ Rb,2Bs,11ns
ĺ Rb,1Rb,21ns

. Hence, Bs,1Bs,2 is

bounded in row sum. Analogously, we have u1
sBs,1 ĺ Cb,11

1
ns

and 11
ns
Bs,2 ĺ Cb,21

1
ns

. Thus,

u1
sBs,1Bs,2 ĺ Cb,11

1
ns
Bs,2 ĺ Cb,1Cb,21

1
ns

. Hence, Bs,1Bs,2 is bounded in column sum.

P.6 If an ns ˆns matrix Bs is absolutely bounded in both row and column sums, then |πmaxpBsq| ă 8

and ∥Bs∥2 ă 8.

Proof. |πmaxpBsq| ă 8 is a direct implication of the Gershgorin circle theorem.1

Besides, ∥Bs∥2 “
a

πmaxpB1
sBsq ă 8 because B1

sBs is absolutely bounded in row and column

sums by P.5.

P.7 Let Bs “ rbijs, 9Bs “ r9bijs be ns ˆns matrices. Let G “ diagpG1, . . . ,GSq, where diag is the block

diagonal operator. Let also µ4η “ Epη4s,i|Gs,Xsq, µ4ϵ “ Epε4s,i|Gs,Xsq, µ22 “ Epη2s,iε
2
s,i|Gs,Xsq,

µ31 “ Epη3s,iεs,i|Gs,Xsq, and µ13 “ Epηs,iε
3
s,i|Gs,Xsq. Under Assumptions 3.1 and A.3,

Vpη1
sBsηs|Gq “ pµ4η ´ 3σ4

0ϵq
řns

i“1 b
2
ii ` σ4

0ϵpTrpBsB
1
sq ` TrpB2

sqq,

Vpε1
sBsεs|Gq “ pµ4ϵ ´ 3σ4

0ϵq
řns

i“1 b
2
ii ` σ4

0ϵpTrpBsB
1
sq ` TrpB2

sqq,

Vpε1
sBsηs|Gq “ pµ22´3σ2

0ησ
2
0ϵq

řns

i“1 b
2
ii`p1´ρ2qσ2

0ησ
2
0ϵpTrpBsqq2`σ2

0ησ
2
0ϵ TrpBsB

1
sq`ρ2σ2

0ησ
2
0ϵ TrpB

2
sq,

Covpη1
sBsηs, ε

1
s

9Bsηs|Gq “ pµ31 ´ 3ρσ3
0ησ0ϵq

řns

i“1 bii
9bii ` ρσ3

0ησ0ϵpTrpBs
9B1
sq ` TrpBs

9Bsqq,

Covpε1
sBsεs,η

1
s

9Bsεs|Gq “ pµ13 ´ 3ρσ0ησ
3
0ϵq

řns

i“1 bii
9bii ` ρσ0ησ

3
0ϵpTrpBs

9B1
sq ` TrpBs

9Bsqq,

Covpη1
sBsηs, ε

1
sBsεs|Gq “ pµ22´2ρ2σ2

0ησ
2
0ϵ´σ2

0ησ
2
0ϵq

řns

i“1 bii
9bii`ρ2σ2

0ησ
2
0ϵpTrpBs

9B1
sq`TrpBs

9Bsqq.

The proof of the lemma is straightforward using the classical definition of variance and covariance.

S.1.2 Identification and Consistent Estimator of pσ2
ϵ0, τ0, ρ0q

We must show that V
`

σ̂2
ϵ pτ, ρq|G

˘

“ opp1q.

We have σ̂2
ϵ pτ, ρq “

S
ÿ

s“1

ppIns
´ λ0Gsqηs ` εsq1FsΩ

´1
s pλ0, τ, ρqF1

sppIns
´ λ0Gsqηs ` εsq

n ´ 2S
. Thus,

Vpσ̂2
ϵ pτ, ρq|Gq “

1

pn ´ 2Sq2

S
ÿ

s“1

`

Vpη1
s

:Msηs|Gq ` 4Vpη1
s

9Msεs|Gq ` Vpε1
sMsεs|Gq`

4Covpη1
s

:Msηs,η
1
s

9Msεs|Gq ` 2Covpη1
s

:Msηs, ε
1
sMsεs|Gq`

4Covpε1
sMsεs,η

1
s

9Msεs|Gq
˘

,

(S.1)

where Ms “ FsΩ
´1
s pλ0, τ, ρqF1

s, 9Ms “ pIns
´ λ0Gsq1Ms, and :Ms “ 9MspIns

´ λ0Gsq.

As πminpΩspλ0, τ, ρq is bounded away from zero (Assumption A.2), we have |πmaxpΩ´1
s pλ0, τ, ρq| “

Opp1q. Thus, max
s

∥Ω´1
s pλ0, τ, ρq∥2 “ Opp1q by P.3. This implies that max

s
∥Ms∥2 “ Opp1q, max

s
∥ 9Ms∥2 “

Opp1q, and max
s

∥ :Ms∥2 “ Opp1q because ∥Fs∥2 “ 1 and ∥Ins
´ λ0Gs∥2 “ Opp1q by P.6.

1See Horn, R. A. and C. R. Johnson (2012): Matrix analysis, Cambridge university press.
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We now need to show that the sum over s of each term of the variance (S.1) is opppn ´ 2Sq2q. By P.2,

the trace of any product of matrices chosen among Ms, 9Ms, and :Ms is Oppnsq and thus, opppn´2Sq2q.

For example, |TrpMs
9Msq| ď ns∥Ms

9Ms∥2 ď ns∥Ms∥2∥ 9Ms∥2 “ Oppnsq “ opppn´ 2Sq2q. On the other

hand,
řS

s“1pTrpMsqq2 “ Opp
řS

s“1 n
2
sq “ opppn ´ 2Sq2q. Moreover,

řns

i“1 m
2
ii ď ns∥Ms∥22 “ Oppnsq “

opppn ´ 2Sq2q by P.2. Analogously,
řns

i“1 mii 9mii “ opppn ´ 2Sq2q. As a result, Vpσ̂2
ϵ pτ, ρq|Gq “ opp1q.

The proof implies, by Chebyshev inequality, that σ̂2
ϵ pτ, ρq ´ E

`

σ̂2
ϵ pτ, ρq|G1, . . . ,GS

˘

converges

in probability to zero. The convergence is uniform in the space of pτ, ρq because σ̂2
ϵ pτ, ρq and

E
`

σ̂2
ϵ pτ, ρq|G1, . . . ,GS

˘

can be expressed as a polynomial function in pτ, ρq. Thus, 1
n pLcpτ, ρq ´

L˚
c pτ, ρqq converges uniformly to zero. This proof also implies that plim σ̂2

ϵ pτ0, ρ0q “ σ2
ϵ0.

S.1.3 Necessary Conditions for the Identification of pσ2
ϵ0, τ0, ρ0q

As λ0 ‰ 0 (Condition (i) of Assumption 3.2) and is identified, Epvsv
1
s|Gsq implies a unique pση0, σϵ0, ρ0q

if Js, JspGs `G1
sqJs and JsGsG

1
sJs are linearly independent. We present a simple subnetwork struc-

ture that verifies this condition.

Let Cs be an arbitrary ns ˆ ns matrix. Unless otherwise stated, we use Cs,ij to denote the pi, jq-th

entry of Cs. Assume that i and j are from the subset of students who have friends in the school

s. The pi, jq-th entry of JsCsJs is Cs,ij ´ Ĉs,‚j ´ Ĉs,i‚ ` Ĉs,‚‚, where Ĉs,‚j “ p1{n̂sq
řns

kPV̂s
Cs,kj ,

Ĉs,i‚ “ p1{n̂sq
řns

lPV̂s
Cs,il, and Ĉs,‚‚ “ p1{n̂2

sq
řns

k,lPV̂s
Cs,kl.

Let G̃s “ GsG
1
s and i1, . . . , i4 be four students from V̂s who are not directly linked and where

only two of them have common friends. Without loss of generality, assume that i1 and i3 have

common friends. For any i P ti1, i2u and j P ti3, i4u, Js,ij “ ´1{n̂s, Gs,ij “ 0, and G1
s,ij “ 0.

Moreover, G̃s,ij “ 0 except for the pair pii, i3q, who have common friends. Let Ls “ b1Js ` b2JspGs `

G1
sqJs ` b3JsGsG

1
sJs “ 0 for some b1, b2, b3 P R. We have Ls,ij “ ´b1{n̂s ´ b2pGs,ij ´ Gs,‚j ´

Gs,i‚ ` Gs,‚‚ ` G1
s,ij ´ G1

s,‚j ´ G1
s,i‚ ` G1

s,‚‚q ` b3pG̃s,ij ´ G̃s,‚j ´ G̃s,i‚ ` G̃s,‚‚q. This implies that

Ls,i1i3 ` Ls,i2i4 ´ Ls,i2i3 ´ Ls,i1i4 “ b3G̃s,i1i3 . Thus, if the combination Ls is zero, then b3 “ 0.

Let j1, . . . , j4 be four students from V̂s, where only two of them are directly linked (mutually or not),

and the others are not directly linked. Without loss of generality, assume that only j1 to j3 are linked,

that is, for any i P tj1, j2u and j P tj3, j4u, Gs,ij “ 0 and G1
s,ij “ 0 except for the pairs pj1, j3q and

pj3, j1q. As b3 “ 0, we have Ls,j1j3 ` Ls,j2j4 ´ Ls,j2j3 ´ Ls,j1j4 “ b2pGs,j1j3 ` G1
s,j1j3

q. Thus if Ls is

zero, then b2 “ 0, and it follows that b1 “ 0.

As a result, Js, JspGs ` G1
sqJs, and JsGsG

1
sJs are linearly independent if, in some school s, there

are four students from V̂s who are not directly linked and only two of them have common friends, and

if in some school s, there are four students from V̂s, where only two of them are linked.

We present an example of this condition by adding three nodes to Figure 1 with two additional links
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(see Figure S.1). There are no links within the nodes i1, i4, i5, and i6, and only i5 and i6 have common

a friends (i7). Besides, only i5 and i7 are linked within the nodes i1, i2, i5, and i7.

i2 i4

i1 i3

i5

i6

i7

Figure S.1: Illustration of the identification
Note: Ñ means that the node on the right side is a friend of the node on the left side.

Many other situations lead to b1 “ b2 “ b3 “ 0. In practice, one can easily verify if Js, JspGs `G1
sqJs

and JsGsG
1
sJs are linearly independent.

S.1.4 Asumptotic Normality in the Case of Endogenous Networks

In the specification controlling for network endogeneity, we replace µout
0,s,i and µin

0,s,i with their estimator

and replace hη
s and hϵ

s with cubic B-spline approximations. Let ζ be the number of knots in the splines.

The knots are points that split the support of µout
0,s,i and µin

0,s,i into intervals. The smooth functions are

approximated by cubic polynomials on each interval. The case ζ “ 0 is equivalent to approximating

hη and hϵ by cubic polynomial.

The cubic B-spline approximation of each hη
s and hϵ

s is a linear combination of bases Bin
k , Bout

k1 ,

where k and k1 take the values 1, . . . , ζ ` 3, and Bin
k and Bout

k1 are piecewise polynomial functions of

µout
0,s,i and µin

0,s,i respectively (for more details, see Hastie, 2017). We also include a linear combination of

Bin
k Bout

k1 to account for interaction between µout
0,s,i and µin

0,s,i. This more flexible approximation is known

as a tensor product of the cubic B-splines. Therefore, hη
s and hϵ

s are approximated by combinations

of pζ ` 3qpζ ` 5q piecewise polynomial functions of µout
0,s,i and µin

0,s,i. As hη
s multiplies Gs in Equation

(11), the case ζ “ 10 leads to plugging 390 new regressors in the initial specification (6).2

Let 9Xs be the matrix of the additional variables (including the new contextual variables). Let

also R̂s “ rRs,Js
9Xss be the new design matrix. We keep the same instrument matrix JsG

2
sXs

for JsGsys. We define Ẑs “ rJsG
2
sXs, X̃s, Js

9Xss, R̂1Ẑ “
řS

s“1 R̂
1
sẐs, Ẑ1Ẑ “

řS
s“1 Ẑ

1
sẐs, and

Ẑ1y “
řS

s“1 Ẑ
1
sJsys. Let Γ̂ be the estimator of the coefficients associated with R̂s. We have Γ̂ “

ppR̂1ẐqpẐ1Ẑq´1pR̂1Ẑq1q´1pR̂1ẐqpẐ1Ẑq´1pẐ1yq.

We also have hη
s ` hϵ

s ´ λGsh
η
s “ 9XsΓ̌0 ` Ês for some parameter Γ̌0, where Ês is an approximation

2In the literature on generalized additive models, a variable selection approach is used to eliminate irrelevant ex-
planatory variables among the new regressors. This approach requires a penalty function and tuning parameters that
are chosen using cross-validation. This goes beyond the scope of this paper because most cross-validation methods need
µout
0,s,i and µin

0,s,i to be independent across i, which is not the case here. In our empirical analysis, there is not much
difference between the results for ζ “ 0 and ζ “ 10. Consequently, we do not really need to care about the number of
new regressors.
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error owing to the B-spline approximation on the one hand and on the other, µout
0,s,i and µin

0,s,i being

replaced with their estimators. The regularity assumption we need for the asymptotic normality is
řS

s“1 Ẑ
1
sÊs{

?
n “ opp1q. If this holds, then

?
npΓ̂ ´ Γ0q

d
Ñ N

`

0, lim
nÑ8

nVpΓ̂q
˘

, where Γ0 “ pψ1
0, Γ̌

1

0q1

and lim
nÑ8

nVpΓ̂q “ σ2
ϵ0B̂

´1
0 D̂0B̂

´1
0 . The matrices B̂0 and D̂0 are defined as the original B0 and D0,

where Rs and Zs are replaced by R̂s and Ẑs.

S.2 Bayesian Estimation of the Network Formation Model

In the Bayesian approach, we assume that µout
0,s,i and µin

0,s,i are random effects following N p0, σ2
outq

and N p0, σ2
inq, respectively, with Epµout

0,s,iµ
in
0,s,iq “ ρµ. To simulate the posterior distribution of µout

0,s,i

and µin
0,s,i, we use the data augmentation technique.3

Let a˚
s,ij “ :x1

s,ij
:β0 ` µout

0,s,i ` µin
0,s,j ` us,ij , such that as,ij “ 1 if a˚

s,ij ą 0 and as,ij “ 0 otherwise,

where us,ij „ N p0, 1q. Let as “ pas,ij ; i ‰ jq1 and a˚
s “

`

a˚
s,ij ; i ‰ j

˘1. The density function of a˚
s ,

conditional on as, :Xs “ r:xs,ij ; i ‰ js
1, :β0, µout

s “ pµout
0,s,1, . . . , µ

out
0,s,iq

1, and µin
s “ pµin

0,s,1, . . . , µ
in
0,s,iq

1 is

proportional to

ś

i‰j

␣

I
`

a˚
s,ij ě 0

˘

I pas,ij “ 1q ` I
`

a˚
s,ij ă 0

˘

I pas,ij “ 0q
(

exp
!

´ 1
2 pa˚

s,ij ´ :x1
s,ij

:β0 ´ µout
0,s,i ´ µin

0,s,jq2
)

,

where Ip.q is the indicator function. This implies that the distribution of a˚
s,ij |as, :Xs, :β0,µ

in
s ,µout

s is

N p:x1
s,ij

:β0 ` µout
0,s,i ` µin

0,s,j , 1q, truncated at the left by 0 if as,ij “ 1, and at the right by 0 if as,ij “ 0.

Given that the number of observations in the network formation model is high, we set a flat prior

distribution for :β0, σ2
in, σ2

out, and ρµ. Thus,

:β0|a1,a
˚
1 ,

:X1,µ
in
1 ,µout

1 , . . . ,aS ,a
˚
S ,

:XS ,µ
in
S ,µout

S ,„ N
ˆ

´

:X1 :X
¯´1

řS
s“1

:X1
s:a˚

s ,
´

:X1 :X
¯´1

˙

,

where :X1 :X “
řS

s“1
:X1
s

:Xs and :a˚
s “ pa˚

s,ij ´ µout
0,s,i ´ µin

0,s,j : i ‰ jq1. For any i,

µin
0,s,i|

:β0,as,a
˚
s ,

:Xs,µ
in
s,´i,µ

out
s „ N

`

ûs,in, σ̂2
s,in

˘

,

where ûs,in “ σ̂2
s,in

ř

i‰jpa˚
s,ij ´ :x1

s,ij
:β0 ´ µin

0,s,jq and σ̂2
s,out “

σ2
in

1 ` pns ´ 1qσ2
in

. Analogously,

µout
0,s,i|

:β0,as,a
˚
s ,

:Xs,µ
in,µout

´i „ N
`

ûs,out, σ̂2
s,out

˘

,

where ûs,out “ σ̂2
s,out

ř

i‰jpa˚
ji ´ :x1

s,ij
:β0 ´ µin

0,s,jq, and σ̂2
s,out “

σ2
out

1 ` pns ´ 1qσ2
out

.

3See Albert, J. H., & Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the
American statistical Association, 88(422), 669-679.
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For the sake of identification, we normalize µin and µout to zero mean in each subnetwork for each

step in the Gibbs sampling. The means of µin and µout before this normalization are added to the

intercept of the subnetwork for the posterior likelihood not to change.

Finally, let Σµ,ν “

¨

˝

σ2
in ρµσinσout

ρµσinσout σ2
out

˛

‚,

Σµ,ν |:β0,a,a
˚, :Xs,µ

in,µout „ Inverse-Wishart
´

n, pVΣµ,ν

¯

,

where pVΣµ,ν
“
řn

i“1pµout
0,s,i, µ

in
0,s,iq.

S.3 Additional Results on the Application

Tables S.1–S.3 present the estimation results after controlling for network endogeneity in our structural

model. The unobserved attributes µout
0,s,i and µin

0,s,i are estimated using a logit model with fixed effects

(see Yan et al., 2019) and a Bayesian random effect model (see OA S.2). We only present the results

where the number of knots (No. knots) takes the values 0, 4, 5, and 6. Because the number of

plugged variables implied by the cubic B-spline approach is large, we do not show the estimates of

the coefficients associated with these variables. However, the line "Endo. Wald prob." in the tables

indicates the p-value of the Wald test of the global significance of these variables.
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Table S.1: Estimation results controlling for network endogeneity: fixed effect approach with B-spline
approximations (full sample)

Sandard model Proposed structural model
No. knots: 0 No. knots: 10 No. knots: 0 No. knots: 10
Coef Sd Err Coef Sd Err Coef Sd Err Coef Sd Err

Peer Effects 0.578 0.033 0.672 0.036 0.823 0.046 0.818 0.047

Own effects
Female 0.170 0.006 0.173 0.006 0.169 0.006 0.169 0.006
Age ´0.021 0.003 ´0.032 0.003 ´0.043 0.003 ´0.043 0.003
Hispanic ´0.102 0.010 ´0.099 0.010 ´0.092 0.010 ´0.092 0.010
Race

Black ´0.141 0.012 ´0.123 0.012 ´0.109 0.013 ´0.107 0.014
Asian 0.215 0.013 0.210 0.013 0.194 0.014 0.194 0.014
Other ´0.023 0.011 ´0.029 0.011 ´0.031 0.011 ´0.031 0.011

Lives with both parents 0.102 0.007 0.097 0.007 0.090 0.007 0.090 0.007
Years in school 0.030 0.003 0.029 0.003 0.024 0.003 0.024 0.003
Member of a club 0.184 0.012 0.151 0.013 0.144 0.013 0.150 0.014
Mother’s education

ă High ´0.073 0.009 ´0.068 0.009 ´0.065 0.009 ´0.064 0.009
ą High 0.142 0.007 0.142 0.008 0.129 0.008 0.131 0.008
Missing 0.030 0.012 0.028 0.012 0.027 0.012 0.027 0.012

Mother’s job
Professional 0.036 0.009 0.035 0.009 0.031 0.009 0.030 0.009
Other ´0.040 0.007 ´0.040 0.008 ´0.039 0.008 ´0.040 0.008
Missing ´0.077 0.011 ´0.075 0.011 ´0.071 0.011 ´0.072 0.011

Contextual effects
Female ´0.112 0.012 ´0.108 0.012 ´0.120 0.014 ´0.117 0.014
Age ´0.051 0.003 ´0.015 0.004 0.025 0.006 0.026 0.006
Hispanic 0.058 0.017 0.078 0.017 0.082 0.020 0.082 0.020
Race

Black 0.015 0.016 0.048 0.017 0.072 0.020 0.076 0.020
Asian ´0.065 0.022 ´0.087 0.023 ´0.123 0.027 ´0.121 0.028
Other ´0.040 0.020 ´0.026 0.020 ´0.002 0.022 ´0.003 0.022

Lives with both parents ´0.035 0.016 ´0.027 0.016 ´0.014 0.018 ´0.014 0.018
Years in school 0.017 0.004 0.003 0.005 ´0.007 0.006 ´0.007 0.006
Member of a club ´0.134 0.027 ´0.110 0.027 ´0.078 0.030 ´0.094 0.031
Mother’s education

ă High ´0.035 0.017 ´0.008 0.017 0.024 0.019 0.024 0.019
ą High 0.011 0.017 ´0.012 0.018 ´0.025 0.022 ´0.024 0.022
Missing ´0.062 0.024 ´0.049 0.024 ´0.027 0.026 ´0.026 0.026

Mother’s job
Professional ´0.053 0.018 ´0.044 0.018 ´0.034 0.019 ´0.033 0.019
Other ´0.088 0.014 ´0.059 0.014 ´0.025 0.016 ´0.026 0.016
Missing ´0.090 0.021 ´0.047 0.022 0.007 0.024 0.006 0.024

σ2
η 0.280 0.279

σ2
ϵ 0.505 0.510 0.057 0.059

ρ 0.527 0.514

Weak instrument F 157 130 119 116
Endogeneity Wald prob. 0.000 0.000 0.000 0.000
Sargan test prob. 0.000 0.020 0.421 0.454

This table presents the estimation results of the proposed model after controlling for network endogeneity. The
functions hη and hϵ are approximated by cubic B-splines, where µout

0,s,i and µin
0,s,i are estimated using a logit model

with individual fixed effects. The line "Endo. Wald prob." indicates the p-value of the Wald test of the significance
of the plugged variables to control for endogeneity.
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Table S.2: Estimation results controlling for network endogeneity: fixed effect approach with tensor
products of B-spline approximations (full sample)

Sandard model Proposed structural model
No. knots: 0 No. knots: 10 No. knots: 0 No. knots: 10
Coef Sd Err Coef Sd Err Coef Sd Err Coef Sd Err

Peer Effects 0.586 0.033 0.692 0.037 0.826 0.047 0.834 0.049

Own effects
Female 0.17 0.006 0.174 0.006 0.169 0.006 0.171 0.006
Age ´0.022 0.003 ´0.037 0.003 ´0.043 0.003 ´0.045 0.004
Hispanic ´0.102 0.01 ´0.100 0.010 ´0.091 0.010 ´0.092 0.010
Race

Black ´0.139 0.012 ´0.113 0.013 ´0.106 0.013 ´0.102 0.014
Asian 0.213 0.013 0.206 0.013 0.194 0.014 0.192 0.014
Other ´0.024 0.011 ´0.029 0.011 ´0.031 0.011 ´0.029 0.011

Lives with both parents 0.102 0.007 0.095 0.007 0.090 0.007 0.089 0.007
Years in school 0.03 0.003 0.028 0.003 0.024 0.003 0.024 0.003
Member of a club 0.185 0.012 0.154 0.013 0.147 0.013 0.157 0.014
Mother’s education

ă High ´0.073 0.009 ´0.066 0.009 ´0.065 0.009 ´0.062 0.009
ą High 0.142 0.008 0.141 0.008 0.129 0.008 0.131 0.008
Missing 0.03 0.012 0.028 0.012 0.027 0.012 0.028 0.012

Mother’s job
Professional 0.036 0.009 0.034 0.009 0.031 0.009 0.031 0.009
Other ´0.04 0.007 ´0.040 0.008 ´0.039 0.008 ´0.039 0.008
Missing ´0.076 0.011 ´0.076 0.011 ´0.071 0.011 ´0.071 0.011

Contextual effects
Female ´0.112 0.012 ´0.107 0.012 ´0.120 0.014 ´0.120 0.014
Age ´0.049 0.003 ´0.008 0.004 0.026 0.006 0.028 0.006
Hispanic 0.062 0.017 0.083 0.018 0.082 0.020 0.084 0.021
Race

Black 0.017 0.016 0.046 0.017 0.071 0.020 0.082 0.020
Asian ´0.063 0.022 ´0.095 0.023 ´0.126 0.028 ´0.127 0.028
Other ´0.037 0.02 ´0.022 0.020 ´0.002 0.022 ´0.001 0.022

Lives with both parents ´0.035 0.016 ´0.025 0.016 ´0.015 0.018 ´0.015 0.018
Years in school 0.017 0.004 0.003 0.005 ´0.007 0.006 ´0.006 0.006
Member of a club ´0.135 0.027 ´0.106 0.027 ´0.078 0.031 ´0.094 0.032
Mother’s education

ă High ´0.032 0.017 ´0.002 0.017 0.025 0.019 0.025 0.019
ą High 0.008 0.017 ´0.016 0.018 ´0.025 0.022 ´0.030 0.023
Missing ´0.061 0.024 ´0.046 0.024 ´0.027 0.026 ´0.025 0.026

Mother’s job
Professional ´0.053 0.018 ´0.040 0.018 ´0.034 0.019 ´0.033 0.019
Other ´0.085 0.014 ´0.050 0.015 ´0.025 0.016 ´0.022 0.016
Missing ´0.087 0.021 ´0.036 0.022 0.008 0.024 0.010 0.024

σ2
η 0.280 0.277

σ2
ϵ 0.506 0.511 0.055 0.056

ρ 0.544 0.544

Weak instrument F 115 127 115 110
Endogeneity Wald prob. 0.000 0.000 0.000 0.000
Sargan test prob. 0.000 0.123 0.324 0.486

This table presents the estimation results of the proposed model after controlling for the network endogeneity. The
functions hη and hϵ are approximated by tensor products of cubic B-splines, where µout

0,s,i and µin
0,s,i are estimated

using a logit model with individual fixed effects. The line "Endo. Wald prob." indicates the p-value of the Wald
test of the significance of the plugged variables to control for endogeneity.
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Table S.3: Estimation results controlling for network endogeneity: Bayesian random effect approach
with B-spline approximations (full sample)

Sandard model Proposed structural model
No. knots: 0 No. knots: 10 No. knots: 0 No. knots: 10
Coef Sd Err Coef Sd Err Coef Sd Err Coef Sd Err

Peer Effects 0.478 0.029 0.478 0.029 0.817 0.047 0.816 0.047

Own effects
Female 0.178 0.006 0.178 0.006 0.167 0.006 0.167 0.006
Age ´0.016 0.003 ´0.016 0.003 ´0.044 0.003 ´0.044 0.003
Hispanic ´0.101 0.01 ´0.101 0.010 ´0.091 0.010 ´0.091 0.010
Race

Black ´0.119 0.012 ´0.120 0.012 ´0.109 0.013 ´0.109 0.013
Asian 0.217 0.013 0.217 0.013 0.194 0.014 0.194 0.014
Other ´0.033 0.011 ´0.033 0.011 ´0.033 0.011 ´0.032 0.011

Lives with both parents 0.105 0.007 0.105 0.007 0.090 0.007 0.090 0.007
Years in school 0.031 0.003 0.031 0.003 0.025 0.003 0.025 0.003
Member of a club 0.168 0.012 0.167 0.012 0.152 0.012 0.151 0.012
Mother’s education

ă High ´0.072 0.009 ´0.072 0.009 ´0.065 0.009 ´0.064 0.009
ą High 0.156 0.007 0.156 0.007 0.130 0.008 0.131 0.008
Missing 0.03 0.012 0.030 0.012 0.025 0.012 0.026 0.012

Mother’s job
Professional 0.036 0.009 0.036 0.009 0.031 0.009 0.031 0.009
Other ´0.044 0.007 ´0.044 0.007 ´0.040 0.008 ´0.040 0.008
Missing ´0.081 0.011 ´0.081 0.011 ´0.073 0.011 ´0.073 0.011

Contextual effects
Female ´0.102 0.012 ´0.101 0.012 ´0.118 0.014 ´0.117 0.014
Age ´0.072 0.004 ´0.072 0.004 0.026 0.006 0.025 0.006
Hispanic 0.044 0.017 0.044 0.017 0.080 0.020 0.081 0.020
Race

Black ´0.004 0.015 ´0.004 0.016 0.071 0.019 0.070 0.019
Asian ´0.033 0.022 ´0.033 0.022 ´0.124 0.028 ´0.122 0.028
Other ´0.045 0.02 ´0.046 0.020 ´0.004 0.022 ´0.003 0.022

Lives with both parents ´0.034 0.016 ´0.034 0.016 ´0.012 0.018 ´0.011 0.018
Years in school 0.029 0.004 0.029 0.004 ´0.007 0.006 ´0.007 0.006
Member of a club ´0.141 0.028 ´0.140 0.028 ´0.082 0.029 ´0.084 0.029
Mother’s education

ă High ´0.048 0.016 ´0.049 0.016 0.022 0.019 0.022 0.019
ą High 0.033 0.017 0.033 0.017 ´0.023 0.022 ´0.023 0.022
Missing ´0.063 0.024 ´0.064 0.024 ´0.026 0.026 ´0.026 0.026

Mother’s job
Professional ´0.057 0.018 ´0.057 0.018 ´0.032 0.019 ´0.031 0.019
Other ´0.109 0.014 ´0.109 0.014 ´0.025 0.016 ´0.025 0.016
Missing ´0.117 0.021 ´0.117 0.021 0.006 0.024 0.006 0.024

σ2
η 0.280 0.279

σ2
ϵ 0.500 0.501 0.059 0.060

ρ 0.508 0.506

Weak instrument F 190 190 115 114
Endogeneity Wald prob. 0.000 0.000 0.000 0.000
Sargan test prob. 0.000 0.000 0.540 0.502

This table presents the estimation results of the proposed model after controlling for the network endogeneity. The
functions hη and hϵ are approximated by cubic B-splines, where µ0,in

s,i and µout
0,s,i are estimated using the Bayesian

random effect model. The line "Endo. Wald prob." indicates the p-value of the Wald test of the significance of the
plugged variables to control for endogeneity.
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Table S.4 presents the estimation results for the data excluding "fully isolated" students and without

controlling for network endogeneity. Model 3 is the standard linear-in-means model by approximating

student effort by GPA, and Model 4 is based on our approach.

Table S.4: Estimation results without controlling for network endogeneity (sample excluding "fully
isolated" students)

Model 3’ Model 4’
Coef Sd Err Coef Sd Err

Peer Effects 0.561 0.030 0.878 0.044

Own effects
Female 0.182 0.006 0.165 0.007
Age ´0.008 0.004 ´0.045 0.004
Hispanic ´0.096 0.011 ´0.086 0.011
Race

Black ´0.113 0.013 ´0.102 0.015
Asian 0.199 0.014 0.173 0.015
Other ´0.030 0.011 ´0.029 0.012

Lives with both parents 0.098 0.008 0.083 0.008
Years in school 0.032 0.003 0.023 0.003
Member of a club 0.169 0.013 0.150 0.013
Mother’s education

ă High ´0.072 0.009 ´0.062 0.009
ą High 0.146 0.008 0.118 0.008
Missing 0.017 0.013 0.013 0.013

Mother’s job
Professional 0.040 0.009 0.034 0.010
Other ´0.035 0.008 ´0.031 0.008
Missing ´0.070 0.012 ´0.061 0.012

Contextual effects
Female ´0.122 0.012 ´0.127 0.013
Age ´0.082 0.004 0.028 0.006
Hispanic 0.049 0.017 0.086 0.021
Race

Black ´0.010 0.017 0.055 0.021
Asian ´0.051 0.022 ´0.129 0.028
Other ´0.040 0.020 ´0.001 0.022

Lives with both parents ´0.047 0.016 ´0.021 0.018
Years in school 0.032 0.004 ´0.008 0.006
Member of a club ´0.160 0.028 ´0.091 0.029
Mother’s education

ă High ´0.043 0.016 0.026 0.019
ą High 0.014 0.017 ´0.036 0.021
Missing ´0.068 0.024 ´0.031 0.026

Mother’s job
Professional ´0.062 0.018 ´0.036 0.020
Other ´0.103 0.014 ´0.021 0.016
Missing ´0.110 0.021 0.010 0.024

σ2
η 0.292

σ2
ϵ 0.493 0.047

ρ 0.485

Weak instrument F 158.76 105.47
Sargan test prob. 0.000 0.493
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Table S.5 presents the estimation results after controlling for network endogeneity using the data

excluding "fully isolated" students.

Table S.5: Estimation results after controlling for network endogeneity (sample excluding "fully iso-
lated" students)

Sandard model Proposed structural model
No. knots: 0 No. knots: 10 No. knots: 0 No. knots: 10
Coef Sd Err Coef Sd Err Coef Sd Err Coef Sd Err

Peer Effects 0.649 0.036 0.728 0.039 0.846 0.048 0.854 0.050

Own effects
Female 0.175 0.007 0.176 0.007 0.172 0.007 0.174 0.007
Age ´0.022 0.004 ´0.035 0.004 ´0.046 0.004 ´0.047 0.004
Hispanic ´0.097 0.011 ´0.094 0.011 ´0.086 0.011 ´0.086 0.011
Race

Black ´0.116 0.014 ´0.092 0.014 ´0.074 0.015 ´0.072 0.016
Asian 0.190 0.014 0.189 0.014 0.171 0.015 0.168 0.015
Other ´0.029 0.011 ´0.031 0.011 ´0.036 0.012 ´0.034 0.012

Lives with both parents 0.093 0.008 0.087 0.008 0.082 0.008 0.081 0.008
Years in school 0.027 0.003 0.024 0.003 0.021 0.003 0.020 0.003
Member of a club 0.195 0.013 0.166 0.014 0.168 0.014 0.173 0.015
Mother’s education

ă High ´0.068 0.009 ´0.062 0.009 ´0.058 0.009 ´0.057 0.009
ą High 0.135 0.008 0.134 0.008 0.125 0.008 0.128 0.008
Missing 0.015 0.013 0.015 0.013 0.013 0.013 0.014 0.013

Mother’s job
Professional 0.036 0.009 0.034 0.009 0.032 0.010 0.032 0.010
Other ´0.035 0.008 ´0.035 0.008 ´0.034 0.008 ´0.034 0.008
Missing ´0.068 0.012 ´0.067 0.012 ´0.063 0.012 ´0.063 0.012

Contextual effects
Female ´0.126 0.012 ´0.119 0.012 ´0.126 0.014 ´0.126 0.015
Age ´0.048 0.004 ´0.008 0.004 0.031 0.006 0.032 0.006
Hispanic 0.064 0.018 0.078 0.018 0.082 0.021 0.083 0.021
Race

Black 0.005 0.017 0.030 0.018 0.045 0.021 0.057 0.021
Asian ´0.071 0.023 ´0.096 0.024 ´0.118 0.028 ´0.117 0.029
Other ´0.031 0.020 ´0.021 0.020 ´0.001 0.022 0.000 0.022

Lives with both parents ´0.039 0.016 ´0.028 0.016 ´0.017 0.018 ´0.018 0.018
Years in school 0.019 0.005 0.005 0.005 ´0.005 0.006 ´0.005 0.006
Member of a club ´0.144 0.027 ´0.115 0.027 ´0.086 0.031 ´0.102 0.032
Mother’s education

ă High ´0.022 0.017 0.002 0.017 0.025 0.019 0.025 0.019
ą High ´0.005 0.018 ´0.021 0.018 ´0.030 0.022 ´0.035 0.023
Missing ´0.058 0.024 ´0.044 0.024 ´0.027 0.026 ´0.027 0.026

Mother’s job
Professional ´0.055 0.018 ´0.044 0.018 ´0.036 0.019 ´0.034 0.019
Other ´0.078 0.014 ´0.049 0.014 ´0.024 0.016 ´0.022 0.016
Missing ´0.073 0.021 ´0.031 0.022 0.010 0.024 0.011 0.024

σ2
η 0.289 0.285

σ2
ϵ 0.498 0.504 0.058 0.059

ρ 0.396 0.395

Weak instrument F 122 108 98 94
Endogeneity Wald prob. 0.000 0.000 0.000 0.000
Sargan test prob. 0.000 0.337 0.718 0.820
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