# Online Appendix 

"Identifying Peer Effects on Student Academic Effort"

Elysée Aristide Houndetoungan and Cristelle Kouame

## S. 1 Additional Notes for the Proofs

## S.1.1 Some Basic Properties

In this section, we state and prove some basic properties used throughout the paper.
P. 1 Let $\left[\mathbf{F}_{s}, \bar{\ell}_{s} / \sqrt{\bar{n}_{s}}, \hat{\ell}_{s} / \sqrt{\hat{n}_{s}}\right]$ be the orthonormal matrix of $\mathbf{J}_{s}$, where the columns in $\mathbf{F}_{s}$ are eigenvectors of $\mathbf{J}_{s}$ corresponding to the eigenvalue one. $\left\|\mathbf{F}_{s}\right\|_{2}=1$, where $\|\cdot\|_{2}$ is the operator norm induced by the $\ell^{2}$-norm.

Proof. $\left\|\mathbf{F}_{s}\right\|_{2}=\max _{\mathbf{u}_{s}^{\prime} \mathbf{u}_{s}=1} \sqrt{\left(\mathbf{F}_{s} \mathbf{u}_{s}\right)^{\prime}\left(\mathbf{F}_{s} \mathbf{u}_{s}\right)}=\max _{\mathbf{u}_{s}^{\prime} \mathbf{u}_{s}=1} \sqrt{\mathbf{u}_{s}^{\prime} \mathbf{u}_{s}}$ because $\mathbf{F}_{s}^{\prime} \mathbf{F}_{s}=\mathbf{I}_{n_{s}-2}$, the identity matrix of dimension $n_{s}-2$. Thus, $\left\|\mathbf{F}_{s}\right\|_{2}=1$.
P. 2 For any $n_{s} \times n_{s}$ matrix, $\mathbf{B}_{s}=\left[b_{s, i j}\right],\left|b_{s, i i}\right| \leqslant\left\|\mathbf{B}_{s}\right\|_{2}$.

Proof. Let $\mathbf{u}_{s}$ be the $n_{s}$-vector of zeros except for the $i$-th element, which is one. Note that $\left\|\mathbf{u}_{s}\right\|_{2}=1$. The $i$-th entry of $\mathbf{B}_{s} \mathbf{u}$ is $b_{s . i i}$. As a result, $\left|b_{s, i i}\right| \leqslant \sqrt{\sum_{j=1}^{n_{s}} b_{s, j i}^{2}}=\sqrt{\left(\mathbf{B}_{s} \mathbf{u}\right)^{\prime}\left(\mathbf{B}_{s} \mathbf{u}\right)} \leqslant$ $\left\|\mathbf{B}_{s}\right\|_{2}$.
P. 3 If $\mathbf{B}_{s}$ is a symmetric matrix of dimension $n_{s} \times n_{s}$, then $\left\|\mathbf{B}_{s}\right\|_{2}=\pi_{\max }\left(\mathbf{B}_{s}\right)$, where $\pi_{\max }($.$) is the$ largest eigenvalue.

Proof. $\left\|\mathbf{B}_{s}\right\|_{2}=\max _{\mathbf{u}_{s}^{\prime} \mathbf{u}_{s}=1} \sqrt{\left(\mathbf{B}_{s} \mathbf{u}_{s}\right)^{\prime}\left(\mathbf{B}_{s} \mathbf{u}_{s}\right)}=\max _{\mathbf{u}_{s}^{\prime} \mathbf{u}_{s}=1} \sqrt{\mathbf{u}_{s}^{\prime} \mathbf{B}_{s}^{2} \mathbf{u}_{s}}=\sqrt{\pi_{\max }\left(\mathbf{B}_{s}^{2}\right)}=\pi_{\max }\left(\mathbf{B}_{s}\right)$.
P. 4 If $\mathbf{B}_{s}$ is a symmetric matrix of dimension $n_{s} \times n_{s}$, then $\pi_{\max }\left(\mathbf{F}_{s}^{\prime} \mathbf{B}_{s} \mathbf{F}_{s}\right) \leqslant \pi_{\max }\left(\mathbf{B}_{s}\right)$.

Proof. $\pi_{\max }\left(\mathbf{F}_{s}^{\prime} \mathbf{B}_{s} \mathbf{F}_{s}\right)=\max _{\mathbf{u}_{s}^{\prime} \mathbf{u}_{s}=1} \mathbf{u}_{s}^{\prime} \mathbf{F}_{s}^{\prime} \mathbf{B}_{s} \mathbf{F}_{s} \mathbf{u}_{s}=\max _{\mathbf{u}_{s}^{\prime} \mathbf{u}_{s}=1}\left(\mathbf{F}_{s} \mathbf{u}_{s}\right)^{\prime} \mathbf{B}_{s}\left(\mathbf{F}_{s} \mathbf{u}_{s}\right) . \quad$ As $\left(\mathbf{F}_{s} \mathbf{u}_{s}\right)^{\prime}\left(\mathbf{F}_{s} \mathbf{u}_{s}\right)=1$, then $\max _{\mathbf{u}_{s}^{\prime} \mathbf{u}_{s}=1}\left(\mathbf{F}_{s} \mathbf{u}_{s}\right)^{\prime} \mathbf{B}_{s}\left(\mathbf{F}_{s} \mathbf{u}_{s}\right) \leqslant \max _{\mathbf{u}_{s}^{\prime} \mathbf{u}_{s}=1} \mathbf{u}_{s}^{\prime} \mathbf{B}_{s} \mathbf{u}_{s}=\pi_{\max }\left(\mathbf{B}_{s}\right)$.
P. 5 Let $\mathbf{B}_{s, 1}$ and $\mathbf{B}_{s, 2}$ be $n_{s} \times n_{s}$ matrices. If $\mathbf{B}_{s, 1}$ and $\mathbf{B}_{s, 2}$ are absolutely bounded in row and column sums, then $\mathbf{B}_{s, 1} \mathbf{B}_{s, 2}$ is absolutely bounded in row and column sums.

Proof. It is sufficient to show that the entries of $\mathbf{B}_{s, 1} \mathbf{B}_{s, 2} \mathbf{u}_{s}$ and $\mathbf{u}_{s}^{\prime} \mathbf{B}_{s, 1} \mathbf{B}_{s, 2}$ are absolutely bounded for all $n_{s}$-vector $\mathbf{u}_{s}$ whose entries take -1 or 1 . Assume that $\mathbf{B}_{s, 1}$ is absolutely bounded in row sum by $C_{b, 1}$ and absolutely bounded in the row sum by $R_{b, 1}$. Assume also that $\mathbf{B}_{s, 2}$ is absolutely bounded in the row sum by $C_{b, 2}$ and absolutely bounded in row sum by $R_{b, 2}$. We have $\mathbf{B}_{s, 2} \mathbf{u}_{s} \leq R_{b, 2} \mathbf{1}_{n_{s}}$ and $\mathbf{B}_{s, 1} \mathbf{1}_{n_{s}} \leq R_{b, 1} \mathbf{1}_{n_{s}}$, where $\leq$ is the pointwise inequality $\leqslant$ and $\mathbf{1}_{n_{s}}$
is an $n_{s}$-vector of ones. Thus, $\mathbf{B}_{s, 1} \mathbf{B}_{s, 2} \mathbf{u}_{s} \leq R_{b, 2} \mathbf{B}_{s, 1} \mathbf{1}_{n_{s}} \leq R_{b, 1} R_{b, 2} \mathbf{1}_{n_{s}}$. Hence, $\mathbf{B}_{s, 1} \mathbf{B}_{s, 2}$ is bounded in row sum. Analogously, we have $\mathbf{u}_{s}^{\prime} \mathbf{B}_{s, 1} \leq C_{b, 1} \mathbf{1}_{n_{s}}^{\prime}$ and $\mathbf{1}_{n_{s}}^{\prime} \mathbf{B}_{s, 2} \leq C_{b, 2} \mathbf{1}_{n_{s}}^{\prime}$. Thus, $\mathbf{u}_{s}^{\prime} \mathbf{B}_{s, 1} \mathbf{B}_{s, 2} \leq C_{b, 1} \mathbf{1}_{n_{s}}^{\prime} \mathbf{B}_{s, 2} \leq C_{b, 1} C_{b, 2} \mathbf{1}_{n_{s}}^{\prime}$. Hence, $\mathbf{B}_{s, 1} \mathbf{B}_{s, 2}$ is bounded in column sum.
P. 6 If an $n_{s} \times n_{s}$ matrix $\mathbf{B}_{s}$ is absolutely bounded in both row and column sums, then $\left|\pi_{\max }\left(\mathbf{B}_{s}\right)\right|<\infty$ and $\left\|\mathbf{B}_{s}\right\|_{2}<\infty$.

Proof. $\left|\pi_{\max }\left(\mathbf{B}_{s}\right)\right|<\infty$ is a direct implication of the Gershgorin circle theorem. ${ }^{1}$
Besides, $\left\|\mathbf{B}_{s}\right\|_{2}=\sqrt{\pi_{\max }\left(\mathbf{B}_{s}^{\prime} \mathbf{B}_{s}\right)}<\infty$ because $\mathbf{B}_{s}^{\prime} \mathbf{B}_{s}$ is absolutely bounded in row and column sums by P.5.
P. 7 Let $\mathbf{B}_{s}=\left[b_{i j}\right], \dot{\mathbf{B}}_{s}=\left[\dot{b}_{i j}\right]$ be $n_{s} \times n_{s}$ matrices. Let $\mathbf{G}=\operatorname{diag}\left(\mathbf{G}_{1}, \ldots, \mathbf{G}_{S}\right)$, where diag is the block diagonal operator. Let also $\mu_{4 \eta}=\mathbb{E}\left(\eta_{s, i}^{4} \mid \mathbf{G}_{s}, \mathbf{X}_{s}\right), \mu_{4 \epsilon}=\mathbb{E}\left(\varepsilon_{s, i}^{4} \mid \mathbf{G}_{s}, \mathbf{X}_{s}\right), \mu_{22}=\mathbb{E}\left(\eta_{s, i}^{2} \varepsilon_{s, i}^{2} \mid \mathbf{G}_{s}, \mathbf{X}_{s}\right)$, $\mu_{31}=\mathbb{E}\left(\eta_{s, i}^{3} \varepsilon_{s, i} \mid \mathbf{G}_{s}, \mathbf{X}_{s}\right)$, and $\mu_{13}=\mathbb{E}\left(\eta_{s, i} \varepsilon_{s, i}^{3} \mid \mathbf{G}_{s}, \mathbf{X}_{s}\right)$. Under Assumptions 3.1 and A.3,
$\mathbb{V}\left(\boldsymbol{\eta}_{s}^{\prime} \mathbf{B}_{s} \boldsymbol{\eta}_{s} \mid \mathbf{G}\right)=\left(\mu_{4 \eta}-3 \sigma_{0 \epsilon}^{4}\right) \sum_{i=1}^{n_{s}} b_{i i}^{2}+\sigma_{0 \epsilon}^{4}\left(\operatorname{Tr}\left(\mathbf{B}_{s} \mathbf{B}_{s}^{\prime}\right)+\operatorname{Tr}\left(\mathbf{B}_{s}^{2}\right)\right)$,
$\mathbb{V}\left(\varepsilon_{s}^{\prime} \mathbf{B}_{s} \boldsymbol{\varepsilon}_{s} \mid \mathbf{G}\right)=\left(\mu_{4 \epsilon}-3 \sigma_{0 \epsilon}^{4}\right) \sum_{i=1}^{n_{s}} b_{i i}^{2}+\sigma_{0 \epsilon}^{4}\left(\operatorname{Tr}\left(\mathbf{B}_{s} \mathbf{B}_{s}^{\prime}\right)+\operatorname{Tr}\left(\mathbf{B}_{s}^{2}\right)\right)$,
$\mathbb{V}\left(\varepsilon_{s}^{\prime} \mathbf{B}_{s} \boldsymbol{\eta}_{s} \mid \mathbf{G}\right)=\left(\mu_{22}-3 \sigma_{0 \eta}^{2} \sigma_{0 \epsilon}^{2}\right) \sum_{i=1}^{n_{s}} b_{i i}^{2}+\left(1-\rho^{2}\right) \sigma_{0 \eta}^{2} \sigma_{0 \epsilon}^{2}\left(\operatorname{Tr}\left(\mathbf{B}_{s}\right)\right)^{2}+\sigma_{0 \eta}^{2} \sigma_{0 \epsilon}^{2} \operatorname{Tr}\left(\mathbf{B}_{s} \mathbf{B}_{s}^{\prime}\right)+\rho^{2} \sigma_{0 \eta}^{2} \sigma_{0 \epsilon}^{2} \operatorname{Tr}\left(\mathbf{B}_{s}^{2}\right)$,
$\operatorname{Cov}\left(\boldsymbol{\eta}_{s}^{\prime} \mathbf{B}_{s} \boldsymbol{\eta}_{s}, \boldsymbol{\varepsilon}_{s}^{\prime} \dot{\mathbf{B}}_{s} \boldsymbol{\eta}_{s} \mid \mathbf{G}\right)=\left(\mu_{31}-3 \rho \sigma_{0 \eta}^{3} \sigma_{0 \epsilon}\right) \sum_{i=1}^{n_{s}} b_{i i} \dot{b}_{i i}+\rho \sigma_{0 \eta}^{3} \sigma_{0 \epsilon}\left(\operatorname{Tr}\left(\mathbf{B}_{s} \dot{\mathbf{B}}_{s}^{\prime}\right)+\operatorname{Tr}\left(\mathbf{B}_{s} \dot{\mathbf{B}}_{s}\right)\right)$,
$\operatorname{Cov}\left(\varepsilon_{s}^{\prime} \mathbf{B}_{s} \varepsilon_{s}, \boldsymbol{\eta}_{s}^{\prime} \dot{\mathbf{B}}_{s} \varepsilon_{s} \mid \mathbf{G}\right)=\left(\mu_{13}-3 \rho \sigma_{0 \eta} \sigma_{0 \epsilon}^{3}\right) \sum_{i=1}^{n_{s}} b_{i i} \dot{b}_{i i}+\rho \sigma_{0 \eta} \sigma_{0 \epsilon}^{3}\left(\operatorname{Tr}\left(\mathbf{B}_{s} \dot{\mathbf{B}}_{s}^{\prime}\right)+\operatorname{Tr}\left(\mathbf{B}_{s} \dot{\mathbf{B}}_{s}\right)\right)$,
$\operatorname{Cov}\left(\boldsymbol{\eta}_{s}^{\prime} \mathbf{B}_{s} \boldsymbol{\eta}_{s}, \boldsymbol{\varepsilon}_{s}^{\prime} \mathbf{B}_{s} \boldsymbol{\varepsilon}_{s} \mid \mathbf{G}\right)=\left(\mu_{22}-2 \rho^{2} \sigma_{0 \eta}^{2} \sigma_{0 \epsilon}^{2}-\sigma_{0 \eta}^{2} \sigma_{0 \epsilon}^{2}\right) \sum_{i=1}^{n_{s}} b_{i i} \dot{b}_{i i}+\rho^{2} \sigma_{0 \eta}^{2} \sigma_{0 \epsilon}^{2}\left(\operatorname{Tr}\left(\mathbf{B}_{s} \dot{\mathbf{B}}_{s}^{\prime}\right)+\operatorname{Tr}\left(\mathbf{B}_{s} \dot{\mathbf{B}}_{s}\right)\right)$.
The proof of the lemma is straightforward using the classical definition of variance and covariance.

## S.1.2 Identification and Consistent Estimator of $\left(\sigma_{\epsilon 0}^{2}, \tau_{0}, \rho_{0}\right)$

We must show that $\mathbb{V}\left(\hat{\sigma}_{\epsilon}^{2}(\tau, \rho) \mid \mathbf{G}\right)=o_{p}(1)$.
We have $\hat{\sigma}_{\epsilon}^{2}(\tau, \rho)=\sum_{s=1}^{S} \frac{\left(\left(\mathbf{I}_{n_{s}}-\lambda_{0} \mathbf{G}_{s}\right) \boldsymbol{\eta}_{s}+\boldsymbol{\varepsilon}_{s}\right)^{\prime} \mathbf{F}_{s} \boldsymbol{\Omega}_{s}^{-1}\left(\lambda_{0}, \tau, \rho\right) \mathbf{F}_{s}^{\prime}\left(\left(\mathbf{I}_{n_{s}}-\lambda_{0} \mathbf{G}_{s}\right) \boldsymbol{\eta}_{s}+\boldsymbol{\varepsilon}_{s}\right)}{n-2 S}$. Thus,

$$
\begin{align*}
\mathbb{V}\left(\hat{\sigma}_{\epsilon}^{2}(\tau, \rho) \mid \mathbf{G}\right)= & \frac{1}{(n-2 S)^{2}} \sum_{s=1}^{S}\left(\mathbb{V}\left(\boldsymbol{\eta}_{s}^{\prime} \ddot{\mathbf{M}}_{s} \boldsymbol{\eta}_{s} \mid \mathbf{G}\right)+4 \mathbb{V}\left(\boldsymbol{\eta}_{s}^{\prime} \dot{\mathbf{M}}_{s} \boldsymbol{\varepsilon}_{s} \mid \mathbf{G}\right)+\mathbb{V}\left(\varepsilon_{s}^{\prime} \mathbf{M}_{s} \boldsymbol{\varepsilon}_{s} \mid \mathbf{G}\right)+\right. \\
& 4 \operatorname{Cov}\left(\boldsymbol{\eta}_{s}^{\prime} \ddot{\mathbf{M}}_{s} \boldsymbol{\eta}_{s}, \boldsymbol{\eta}_{s}^{\prime} \dot{\mathbf{M}}_{s} \boldsymbol{\varepsilon}_{s} \mid \mathbf{G}\right)+2 \mathbb{C o v}\left(\boldsymbol{\eta}_{s}^{\prime} \ddot{\mathbf{M}}_{s} \boldsymbol{\eta}_{s}, \boldsymbol{\varepsilon}_{s}^{\prime} \mathbf{M}_{s} \boldsymbol{\varepsilon}_{s} \mid \mathbf{G}\right)+  \tag{S.1}\\
& \left.4 \operatorname{Cov}\left(\boldsymbol{\varepsilon}_{s}^{\prime} \mathbf{M}_{s} \boldsymbol{\varepsilon}_{s}, \boldsymbol{\eta}_{s}^{\prime} \dot{\mathbf{M}}_{s} \boldsymbol{\varepsilon}_{s} \mid \mathbf{G}\right)\right)
\end{align*}
$$

where $\mathbf{M}_{s}=\mathbf{F}_{s} \boldsymbol{\Omega}_{s}^{-1}\left(\lambda_{0}, \tau, \rho\right) \mathbf{F}_{s}^{\prime}, \dot{\mathbf{M}}_{s}=\left(\mathbf{I}_{n_{s}}-\lambda_{0} \mathbf{G}_{s}\right)^{\prime} \mathbf{M}_{s}$, and $\ddot{\mathbf{M}}_{s}=\dot{\mathbf{M}}_{s}\left(\mathbf{I}_{n_{s}}-\lambda_{0} \mathbf{G}_{s}\right)$.
As $\pi_{\min }\left(\boldsymbol{\Omega}_{s}\left(\lambda_{0}, \tau, \rho\right)\right.$ is bounded away from zero (Assumption A.2), we have $\mid \pi_{\max }\left(\boldsymbol{\Omega}_{s}^{-1}\left(\lambda_{0}, \tau, \rho\right) \mid=\right.$ $O_{p}(1)$. Thus, $\max _{s}\left\|\boldsymbol{\Omega}_{s}^{-1}\left(\lambda_{0}, \tau, \rho\right)\right\|_{2}=O_{p}(1)$ by P.3. This implies that $\max _{s}\left\|\mathbf{M}_{s}\right\|_{2}=O_{p}(1), \max _{s}\left\|\dot{\mathbf{M}}_{s}\right\|_{2}=$ $O_{p}(1)$, and $\max _{s}\left\|\ddot{\mathbf{M}}_{s}\right\|_{2}=O_{p}(1)$ because $\left\|\mathbf{F}_{s}\right\|_{2}=1$ and $\left\|\mathbf{I}_{n_{s}}-\lambda_{0} \mathbf{G}_{s}\right\|_{2}=O_{p}(1)$ by P.6.

[^0]We now need to show that the sum over $s$ of each term of the variance (S.1) is $o_{p}\left((n-2 S)^{2}\right)$. By P.2, the trace of any product of matrices chosen among $\mathbf{M}_{s}, \dot{\mathbf{M}}_{s}$, and $\ddot{\mathbf{M}}_{s}$ is $O_{p}\left(n_{s}\right)$ and thus, $o_{p}\left((n-2 S)^{2}\right)$. For example, $\left|\operatorname{Tr}\left(\mathbf{M}_{s} \dot{\mathbf{M}}_{s}\right)\right| \leqslant n_{s}\left\|\mathbf{M}_{s} \dot{\mathbf{M}}_{s}\right\|_{2} \leqslant n_{s}\left\|\mathbf{M}_{s}\right\|_{2}\left\|\dot{\mathbf{M}}_{s}\right\|_{2}=O_{p}\left(n_{s}\right)=o_{p}\left((n-2 S)^{2}\right)$. On the other hand, $\sum_{s=1}^{S}\left(\operatorname{Tr}\left(\mathbf{M}_{s}\right)\right)^{2}=O_{p}\left(\sum_{s=1}^{S} n_{s}^{2}\right)=o_{p}\left((n-2 S)^{2}\right)$. Moreover, $\sum_{i=1}^{n_{s}} m_{i i}^{2} \leqslant n_{s}\left\|\mathbf{M}_{s}\right\|_{2}^{2}=O_{p}\left(n_{s}\right)=$ $o_{p}\left((n-2 S)^{2}\right)$ by P.2. Analogously, $\sum_{i=1}^{n_{s}} m_{i i} \dot{m}_{i i}=o_{p}\left((n-2 S)^{2}\right)$. As a result, $\mathbb{V}\left(\hat{\sigma}_{\epsilon}^{2}(\tau, \rho) \mid \mathbf{G}\right)=o_{p}(1)$.

The proof implies, by Chebyshev inequality, that $\hat{\sigma}_{\epsilon}^{2}(\tau, \rho)-\mathbb{E}\left(\hat{\sigma}_{\epsilon}^{2}(\tau, \rho) \mid \mathbf{G}_{1}, \ldots, \mathbf{G}_{S}\right)$ converges in probability to zero. The convergence is uniform in the space of ( $\tau, \rho$ ) because $\hat{\sigma}_{\epsilon}^{2}(\tau, \rho)$ and $\mathbb{E}\left(\hat{\sigma}_{\epsilon}^{2}(\tau, \rho) \mid \mathbf{G}_{1}, \ldots, \mathbf{G}_{S}\right)$ can be expressed as a polynomial function in $(\tau, \rho)$. Thus, $\frac{1}{n}\left(L_{c}(\tau, \rho)-\right.$ $\left.L_{c}^{*}(\tau, \rho)\right)$ converges uniformly to zero. This proof also implies that $\operatorname{plim} \hat{\sigma}_{\epsilon}^{2}\left(\tau_{0}, \rho_{0}\right)=\sigma_{\epsilon 0}^{2}$.

## S.1.3 Necessary Conditions for the Identification of $\left(\sigma_{\epsilon 0}^{2}, \tau_{0}, \rho_{0}\right)$

As $\lambda_{0} \neq 0$ (Condition (i) of Assumption 3.2) and is identified, $\mathbb{E}\left(\boldsymbol{v}_{s} \boldsymbol{v}_{s}^{\prime} \mid \mathbf{G}_{s}\right)$ implies a unique ( $\left.\sigma_{\eta 0}, \sigma_{\epsilon 0}, \rho_{0}\right)$ if $\mathbf{J}_{s}, \mathbf{J}_{s}\left(\mathbf{G}_{s}+\mathbf{G}_{s}^{\prime}\right) \mathbf{J}_{s}$ and $\mathbf{J}_{s} \mathbf{G}_{s} \mathbf{G}_{s}^{\prime} \mathbf{J}_{s}$ are linearly independent. We present a simple subnetwork structure that verifies this condition.

Let $\mathbf{C}_{s}$ be an arbitrary $n_{s} \times n_{s}$ matrix. Unless otherwise stated, we use $\mathbf{C}_{s, i j}$ to denote the ( $i, j$ )-th entry of $\mathbf{C}_{s}$. Assume that $i$ and $j$ are from the subset of students who have friends in the school $s$. The $(i, j)$-th entry of $\mathbf{J}_{s} \mathbf{C}_{s} \mathbf{J}_{s}$ is $\mathbf{C}_{s, i j}-\hat{\mathbf{C}}_{s, \bullet j}-\hat{\mathbf{C}}_{s, i \bullet}+\hat{\mathbf{C}}_{s, \bullet \bullet}$, where $\hat{\mathbf{C}}_{s, \bullet j}=\left(1 / \hat{n}_{s}\right) \sum_{k \in \hat{\mathcal{V}}_{s}}^{n_{s}} \mathbf{C}_{s, k j}$, $\hat{\mathbf{C}}_{s, i \bullet}=\left(1 / \hat{n}_{s}\right) \sum_{l \in \hat{\mathcal{V}}_{s}}^{n_{s}} \mathbf{C}_{s, i l}$, and $\hat{\mathbf{C}}_{s, \bullet \bullet}=\left(1 / \hat{n}_{s}^{2}\right) \sum_{k, l l \hat{\mathcal{V}}_{s}}^{n_{s}} \mathbf{C}_{s, k l}$.
Let $\tilde{\mathbf{G}}_{s}=\mathbf{G}_{s} \mathbf{G}_{s}^{\prime}$ and $i_{1}, \ldots, i_{4}$ be four students from $\hat{\mathcal{V}}_{s}$ who are not directly linked and where only two of them have common friends. Without loss of generality, assume that $i_{1}$ and $i_{3}$ have common friends. For any $i \in\left\{i_{1}, i_{2}\right\}$ and $j \in\left\{i_{3}, i_{4}\right\}, \mathbf{J}_{s, i j}=-1 / \hat{n}_{s}, \mathbf{G}_{s, i j}=0$, and $\mathbf{G}_{s, i j}^{\prime}=0$. Moreover, $\tilde{\mathbf{G}}_{s, i j}=0$ except for the pair $\left(i_{i}, i_{3}\right)$, who have common friends. Let $\mathbf{L}_{s}=b_{1} \mathbf{J}_{s}+b_{2} \mathbf{J}_{s}\left(\mathbf{G}_{s}+\right.$ $\left.\mathbf{G}_{s}^{\prime}\right) \mathbf{J}_{s}+b_{3} \mathbf{J}_{s} \mathbf{G}_{s} \mathbf{G}_{s}^{\prime} \mathbf{J}_{s}=0$ for some $b_{1}, b_{2}, b_{3} \in \mathbb{R}$. We have $\mathbf{L}_{s, i j}=-b_{1} / \hat{n}_{s}-b_{2}\left(\mathbf{G}_{s, i j}-\mathbf{G}_{s, \bullet j}-\right.$ $\left.\mathbf{G}_{s, i \bullet}+\mathbf{G}_{s, \bullet \bullet}+\mathbf{G}_{s, i j}^{\prime}-\mathbf{G}_{s, \bullet j}^{\prime}-\mathbf{G}_{s, i \bullet}^{\prime}+\mathbf{G}_{s, \bullet \bullet}^{\prime}\right)+b_{3}\left(\tilde{\mathbf{G}}_{s, i j}-\tilde{\mathbf{G}}_{s, \bullet j}-\tilde{\mathbf{G}}_{s, i \bullet}+\tilde{\mathbf{G}}_{s, \bullet \bullet}\right)$. This implies that $\mathbf{L}_{s, i_{1} i_{3}}+\mathbf{L}_{s, i_{2} i_{4}}-\mathbf{L}_{s, i_{2} i_{3}}-\mathbf{L}_{s, i_{1} i_{4}}=b_{3} \tilde{\mathbf{G}}_{s, i_{1} i_{3}}$. Thus, if the combination $\mathbf{L}_{s}$ is zero, then $b_{3}=0$.
Let $j_{1}, \ldots, j_{4}$ be four students from $\hat{\mathcal{V}}_{s}$, where only two of them are directly linked (mutually or not), and the others are not directly linked. Without loss of generality, assume that only $j_{1}$ to $j_{3}$ are linked, that is, for any $i \in\left\{j_{1}, j_{2}\right\}$ and $j \in\left\{j_{3}, j_{4}\right\}, \mathbf{G}_{s, i j}=0$ and $\mathbf{G}_{s, i j}^{\prime}=0$ except for the pairs $\left(j_{1}, j_{3}\right)$ and $\left(j_{3}, j_{1}\right)$. As $b_{3}=0$, we have $\mathbf{L}_{s, j_{1} j_{3}}+\mathbf{L}_{s, j_{2} j_{4}}-\mathbf{L}_{s, j_{2} j_{3}}-\mathbf{L}_{s, j_{1} j_{4}}=b_{2}\left(\mathbf{G}_{s, j_{1} j_{3}}+\mathbf{G}_{s, j_{1} j_{3}}^{\prime}\right)$. Thus if $\mathbf{L}_{s}$ is zero, then $b_{2}=0$, and it follows that $b_{1}=0$.
As a result, $\mathbf{J}_{s}, \mathbf{J}_{s}\left(\mathbf{G}_{s}+\mathbf{G}_{s}^{\prime}\right) \mathbf{J}_{s}$, and $\mathbf{J}_{s} \mathbf{G}_{s} \mathbf{G}_{s}^{\prime} \mathbf{J}_{s}$ are linearly independent if, in some school $s$, there are four students from $\hat{\mathcal{V}}_{s}$ who are not directly linked and only two of them have common friends, and if in some school $s$, there are four students from $\hat{\mathcal{V}}_{s}$, where only two of them are linked.
We present an example of this condition by adding three nodes to Figure 1 with two additional links
(see Figure S.1). There are no links within the nodes $i_{1}, i_{4}, i_{5}$, and $i_{6}$, and only $i_{5}$ and $i_{6}$ have common a friends $\left(i_{7}\right)$. Besides, only $i_{5}$ and $i_{7}$ are linked within the nodes $i_{1}, i_{2}, i_{5}$, and $i_{7}$.


Figure S.1: Illustration of the identification
Note: $\rightarrow$ means that the node on the right side is a friend of the node on the left side.

Many other situations lead to $b_{1}=b_{2}=b_{3}=0$. In practice, one can easily verify if $\mathbf{J}_{s}, \mathbf{J}_{s}\left(\mathbf{G}_{s}+\mathbf{G}_{s}^{\prime}\right) \mathbf{J}_{s}$ and $\mathbf{J}_{s} \mathbf{G}_{s} \mathbf{G}_{s}^{\prime} \mathbf{J}_{s}$ are linearly independent.

## S.1.4 Asumptotic Normality in the Case of Endogenous Networks

In the specification controlling for network endogeneity, we replace $\mu_{0, s, i}^{o u t}$ and $\mu_{0, s, i}^{i n}$ with their estimator and replace $\mathbf{h}_{s}^{\eta}$ and $\mathbf{h}_{s}^{\epsilon}$ with cubic B-spline approximations. Let $\zeta$ be the number of knots in the splines. The knots are points that split the support of $\mu_{0, s, i}^{\text {out }}$ and $\mu_{0, s, i}^{i n}$ into intervals. The smooth functions are approximated by cubic polynomials on each interval. The case $\zeta=0$ is equivalent to approximating $h_{\eta}$ and $h_{\epsilon}$ by cubic polynomial.

The cubic B-spline approximation of each $\mathbf{h}_{s}^{\eta}$ and $\mathbf{h}_{s}^{\epsilon}$ is a linear combination of bases $B_{k}^{i n}, B_{k^{\prime}}^{\text {out }}$, where $k$ and $k^{\prime}$ take the values $1, \ldots, \zeta+3$, and $B_{k}^{i n}$ and $B_{k^{\prime}}^{o u t}$ are piecewise polynomial functions of $\mu_{0, s, i}^{o u t}$ and $\mu_{0, s, i}^{i n}$ respectively (for more details, see Hastie, 2017). We also include a linear combination of $B_{k}^{i n} B_{k^{\prime}}^{\text {out }}$ to account for interaction between $\mu_{0, s, i}^{o u t}$ and $\mu_{0, s, i}^{i n}$. This more flexible approximation is known as a tensor product of the cubic B-splines. Therefore, $\mathbf{h}_{s}^{\eta}$ and $\mathbf{h}_{s}^{\epsilon}$ are approximated by combinations of $(\zeta+3)(\zeta+5)$ piecewise polynomial functions of $\mu_{0, s, i}^{o u t}$ and $\mu_{0, s, i}^{i n}$. As $\mathbf{h}_{s}^{\eta}$ multiplies $\mathbf{G}_{s}$ in Equation (11), the case $\zeta=10$ leads to plugging 390 new regressors in the initial specification (6). ${ }^{2}$

Let $\dot{\mathbf{X}}_{s}$ be the matrix of the additional variables (including the new contextual variables). Let also $\hat{\mathbf{R}}_{s}=\left[\mathbf{R}_{s}, \mathbf{J}_{s} \dot{\mathbf{X}}_{s}\right]$ be the new design matrix. We keep the same instrument matrix $\mathbf{J}_{s} \mathbf{G}_{s}^{2} \mathbf{X}_{s}$ for $\mathbf{J}_{s} \mathbf{G}_{s} \mathbf{y}_{s}$. We define $\hat{\mathbf{Z}}_{s}=\left[\mathbf{J}_{s} \mathbf{G}_{s}^{2} \mathbf{X}_{s}, \quad \tilde{\mathbf{X}}_{s}, \mathbf{J}_{s} \dot{\mathbf{X}}_{s}\right], \hat{\mathbf{R}}^{\prime} \hat{\mathbf{Z}}=\sum_{s=1}^{S} \hat{\mathbf{R}}_{s}^{\prime} \hat{\mathbf{Z}}_{s}, \hat{\mathbf{Z}}^{\prime} \hat{\mathbf{Z}}=\sum_{s=1}^{S} \hat{\mathbf{Z}}_{s}^{\prime} \hat{\mathbf{Z}}_{s}$, and $\hat{\mathbf{Z}}^{\prime} \mathbf{y}=\sum_{s=1}^{S} \hat{\mathbf{Z}}_{s}^{\prime} \mathbf{J}_{s} \mathbf{y}_{s}$. Let $\hat{\boldsymbol{\Gamma}}$ be the estimator of the coefficients associated with $\hat{\mathbf{R}}_{s}$. We have $\hat{\boldsymbol{\Gamma}}=$ $\left(\left(\hat{\mathbf{R}}^{\prime} \hat{\mathbf{Z}}\right)\left(\hat{\mathbf{Z}}^{\prime} \hat{\mathbf{Z}}\right)^{-1}\left(\hat{\mathbf{R}}^{\prime} \hat{\mathbf{Z}}\right)^{\prime}\right)^{-1}\left(\hat{\mathbf{R}}^{\prime} \hat{\mathbf{Z}}\right)\left(\hat{\mathbf{Z}}^{\prime} \hat{\mathbf{Z}}\right)^{-1}\left(\hat{\mathbf{Z}}^{\prime} \mathbf{y}\right)$.
We also have $\mathbf{h}_{s}^{\eta}+\mathbf{h}_{s}^{\epsilon}-\lambda \mathbf{G}_{s} \mathbf{h}_{s}^{\eta}=\dot{\mathbf{X}}_{s} \check{\boldsymbol{\Gamma}}_{0}+\hat{\mathcal{E}}_{s}$ for some parameter $\check{\boldsymbol{\Gamma}}_{0}$, where $\hat{\mathcal{E}}_{s}$ is an approximation

[^1]error owing to the B-spline approximation on the one hand and on the other, $\mu_{0, s, i}^{\text {out }}$ and $\mu_{0, s, i}^{i n}$ being replaced with their estimators. The regularity assumption we need for the asymptotic normality is $\sum_{s=1}^{S} \hat{\mathbf{Z}}_{s}^{\prime} \hat{\mathcal{E}}_{s} / \sqrt{n}=o_{p}(1)$. If this holds, then $\sqrt{n}\left(\hat{\boldsymbol{\Gamma}}-\boldsymbol{\Gamma}_{0}\right) \xrightarrow{d} \mathcal{N}\left(0, \lim _{n \rightarrow \infty} n \mathbb{V}(\hat{\boldsymbol{\Gamma}})\right)$, where $\boldsymbol{\Gamma}_{0}=\left(\boldsymbol{\psi}_{0}^{\prime}, \check{\boldsymbol{\Gamma}}_{0}^{\prime}\right)^{\prime}$ and $\lim _{n \rightarrow \infty} n \mathbb{V}(\hat{\boldsymbol{\Gamma}})=\sigma_{\epsilon 0}^{2} \hat{\mathbf{B}}_{0}^{-1} \hat{\mathbf{D}}_{0} \hat{\mathbf{B}}_{0}^{-1}$. The matrices $\hat{\mathbf{B}}_{0}$ and $\hat{\mathbf{D}}_{0}$ are defined as the original $\mathbf{B}_{0}$ and $\mathbf{D}_{0}$, where $\mathbf{R}_{s}$ and $\mathbf{Z}_{s}$ are replaced by $\hat{\mathbf{R}}_{s}$ and $\hat{\mathbf{Z}}_{s}$.

## S. 2 Bayesian Estimation of the Network Formation Model

In the Bayesian approach, we assume that $\mu_{0, s, i}^{\text {out }}$ and $\mu_{0, s, i}^{i n}$ are random effects following $\mathcal{N}\left(0, \sigma_{\text {out }}^{2}\right)$ and $\mathcal{N}\left(0, \sigma_{\text {in }}^{2}\right)$, respectively, with $\mathbb{E}\left(\mu_{0, s, i}^{\text {out }} \mu_{0, s, i}^{i n}\right)=\rho_{\mu}$. To simulate the posterior distribution of $\mu_{0, s, i}^{\text {out }}$ and $\mu_{0, s, i}^{i n}$, we use the data augmentation technique. ${ }^{3}$
Let $a_{s, i j}^{*}=\ddot{\mathbf{x}}_{s, i j}^{\prime} \ddot{\boldsymbol{\beta}}_{0}+\mu_{0, s, i}^{o u t}+\mu_{0, s, j}^{i n}+u_{s, i j}$, such that $a_{s, i j}=1$ if $a_{s, i j}^{*}>0$ and $a_{s, i j}=0$ otherwise, where $u_{s, i j} \sim \mathcal{N}(0,1)$. Let $\mathbf{a}_{s}=\left(a_{s, i j} ; i \neq j\right)^{\prime}$ and $\mathbf{a}_{s}^{*}=\left(a_{s, i j}^{*} ; i \neq j\right)^{\prime}$. The density function of $\mathbf{a}_{s}^{*}$, conditional on $\mathbf{a}_{s}, \ddot{\mathbf{X}}_{s}=\left[\ddot{\mathbf{x}}_{s, i j} ; i \neq j\right]^{\prime}, \ddot{\boldsymbol{\beta}}_{0}, \boldsymbol{\mu}_{s}^{o u t}=\left(\mu_{0, s, 1}^{o u t}, \ldots, \mu_{0, s, i}^{o u t}\right)^{\prime}$, and $\boldsymbol{\mu}_{s}^{i n}=\left(\mu_{0, s, 1}^{i n}, \ldots, \mu_{0, s, i}^{i n}\right)^{\prime}$ is proportional to
$\prod_{i \neq j}\left\{\mathrm{I}\left(a_{s, i j}^{*} \geqslant 0\right) \mathrm{I}\left(a_{s, i j}=1\right)+\mathrm{I}\left(a_{s, i j}^{*}<0\right) \mathrm{I}\left(a_{s, i j}=0\right)\right\} \exp \left\{-\frac{1}{2}\left(a_{s, i j}^{*}-\ddot{\mathbf{x}}_{s, i j}^{\prime} \ddot{\boldsymbol{\beta}}_{0}-\mu_{0, s, i}^{o u t}-\mu_{0, s, j}^{i n}\right)^{2}\right\}$, where $\mathrm{I}($.$) is the indicator function. This implies that the distribution of a_{s, i j}^{*} \mid \mathbf{a}_{s}, \ddot{\mathbf{X}}_{s}, \ddot{\boldsymbol{\beta}}_{0}, \boldsymbol{\mu}_{s}^{i n}, \boldsymbol{\mu}_{s}^{o u t}$ is $\mathcal{N}\left(\ddot{\mathbf{x}}_{s, i j}^{\prime} \ddot{\boldsymbol{\beta}}_{0}+\mu_{0, s, i}^{o u t}+\mu_{0, s, j}^{i n}, 1\right)$, truncated at the left by 0 if $a_{s, i j}=1$, and at the right by 0 if $a_{s, i j}=0$. Given that the number of observations in the network formation model is high, we set a flat prior distribution for $\ddot{\boldsymbol{\beta}}_{0}, \sigma_{\text {in }}^{2}, \sigma_{\text {out }}^{2}$, and $\rho_{\mu}$. Thus,

$$
\ddot{\boldsymbol{\beta}}_{0} \mid \mathbf{a}_{1}, \mathbf{a}_{1}^{*}, \ddot{\mathbf{X}}_{1}, \boldsymbol{\mu}_{1}^{i n}, \boldsymbol{\mu}_{1}^{o u t}, \ldots, \mathbf{a}_{S}, \mathbf{a}_{S}^{*}, \ddot{\mathbf{X}}_{S}, \boldsymbol{\mu}_{S}^{i n}, \boldsymbol{\mu}_{S}^{o u t}, \sim \mathcal{N}\left(\left(\ddot{\mathbf{X}}^{\prime} \ddot{\mathbf{X}}\right)^{-1} \sum_{s=1}^{S} \ddot{\mathbf{X}}_{s}^{\prime} \ddot{\mathbf{a}}_{s}^{*},\left(\ddot{\mathbf{X}}^{\prime} \ddot{\mathbf{X}}\right)^{-1}\right)
$$

where $\ddot{\mathbf{X}}^{\prime} \ddot{\mathbf{X}}=\sum_{s=1}^{S} \ddot{\mathbf{X}}_{s}^{\prime} \ddot{\mathbf{X}}_{s}$ and $\ddot{\mathbf{a}}_{s}^{*}=\left(a_{s, i j}^{*}-\mu_{0, s, i}^{o u t}-\mu_{0, s, j}^{i n}: i \neq j\right)^{\prime}$. For any $i$,

$$
\mu_{0, s, i}^{i n} \mid \ddot{\boldsymbol{\beta}}_{0}, \mathbf{a}_{s}, \mathbf{a}_{s}^{*}, \ddot{\mathbf{X}}_{s}, \boldsymbol{\mu}_{s,-i}^{i n}, \boldsymbol{\mu}_{s}^{o u t} \sim \mathcal{N}\left(\hat{u}_{s, i n}, \hat{\sigma}_{s, i n}^{2}\right),
$$

where $\hat{u}_{s, i n}=\hat{\sigma}_{s, i n}^{2} \sum_{i \neq j}\left(a_{s, i j}^{*}-\ddot{\mathbf{x}}_{s, i j}^{\prime} \ddot{\boldsymbol{\beta}}_{0}-\mu_{0, s, j}^{i n}\right)$ and $\hat{\sigma}_{s, o u t}^{2}=\frac{\sigma_{i n}^{2}}{1+\left(n_{s}-1\right) \sigma_{i n}^{2}}$. Analogously,

$$
\mu_{0, s, i}^{\text {out }} \mid \ddot{\boldsymbol{\beta}}_{0}, \mathbf{a}_{s}, \mathbf{a}_{s}^{*}, \ddot{\mathbf{X}}_{s}, \boldsymbol{\mu}^{\text {in }}, \boldsymbol{\mu}_{-i}^{\text {out }} \sim \mathcal{N}\left(\hat{u}_{s, \text { out }}, \hat{\sigma}_{s, \text { out }}^{2}\right),
$$

where $\hat{u}_{s, \text { out }}=\hat{\sigma}_{s, \text { out }}^{2} \sum_{i \neq j}\left(a_{j i}^{*}-\ddot{\mathbf{x}}_{s, i j}^{\prime} \ddot{\boldsymbol{\beta}}_{0}-\mu_{0, s, j}^{\text {in }}\right)$, and $\hat{\sigma}_{s, \text { out }}^{2}=\frac{\sigma_{\text {out }}^{2}}{1+\left(n_{s}-1\right) \sigma_{\text {out }}^{2}}$.

[^2]For the sake of identification, we normalize $\boldsymbol{\mu}^{i n}$ and $\boldsymbol{\mu}^{\text {out }}$ to zero mean in each subnetwork for each step in the Gibbs sampling. The means of $\boldsymbol{\mu}^{\text {in }}$ and $\boldsymbol{\mu}^{\text {out }}$ before this normalization are added to the intercept of the subnetwork for the posterior likelihood not to change.
Finally, let $\boldsymbol{\Sigma}_{\mu, \nu}=\left(\begin{array}{cc}\sigma_{\text {in }}^{2} & \rho_{\mu} \sigma_{\text {in }} \sigma_{\text {out }} \\ \rho_{\mu} \sigma_{\text {in }} \sigma_{\text {out }} & \sigma_{\text {out }}^{2}\end{array}\right)$,

$$
\boldsymbol{\Sigma}_{\mu, \nu} \mid \ddot{\boldsymbol{\beta}}_{0}, \mathbf{a}, \mathbf{a}^{*}, \ddot{\mathbf{X}}_{s}, \boldsymbol{\mu}^{i n}, \boldsymbol{\mu}^{\text {out }} \sim \text { Inverse-Wishart }\left(n, \hat{\mathbf{V}}_{\boldsymbol{\Sigma}_{\mu, \nu}}\right)
$$

where $\widehat{\mathbf{V}}_{\boldsymbol{\Sigma}_{\mu, \nu}}=\sum_{i=1}^{n}\left(\mu_{0, s, i}^{o u t}, \mu_{0, s, i}^{i n}\right)$.

## S. 3 Additional Results on the Application

Tables S.1-S. 3 present the estimation results after controlling for network endogeneity in our structural model. The unobserved attributes $\mu_{0, s, i}^{o u t}$ and $\mu_{0, s, i}^{i n}$ are estimated using a logit model with fixed effects (see Yan et al., 2019) and a Bayesian random effect model (see OA S.2). We only present the results where the number of knots (No. knots) takes the values $0,4,5$, and 6 . Because the number of plugged variables implied by the cubic B-spline approach is large, we do not show the estimates of the coefficients associated with these variables. However, the line "Endo. Wald prob." in the tables indicates the $p$-value of the Wald test of the global significance of these variables.

Table S.1: Estimation results controlling for network endogeneity: fixed effect approach with B-spline approximations (full sample)

|  | Sandard model |  |  |  | Proposed structural model |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | No. knots: 0 |  | No. knots: 10 |  | No. knots: 0 |  | No. knots: 10 |  |
|  | Coef | Sd Err |
| Peer Effects | 0.578 | 0.033 | 0.672 | 0.036 | 0.823 | 0.046 | 0.818 | 0.047 |
| Own effects |  |  |  |  |  |  |  |  |
| Female | 0.170 | 0.006 | 0.173 | 0.006 | 0.169 | 0.006 | 0.169 | 0.006 |
| Age | -0.021 | 0.003 | -0.032 | 0.003 | -0.043 | 0.003 | -0.043 | 0.003 |
| Hispanic | -0.102 | 0.010 | -0.099 | 0.010 | -0.092 | 0.010 | -0.092 | 0.010 |
| Race |  |  |  |  |  |  |  |  |
| Black | -0.141 | 0.012 | -0.123 | 0.012 | -0.109 | 0.013 | -0.107 | 0.014 |
| Asian | 0.215 | 0.013 | 0.210 | 0.013 | 0.194 | 0.014 | 0.194 | 0.014 |
| Other | -0.023 | 0.011 | -0.029 | 0.011 | -0.031 | 0.011 | -0.031 | 0.011 |
| Lives with both parents | 0.102 | 0.007 | 0.097 | 0.007 | 0.090 | 0.007 | 0.090 | 0.007 |
| Years in school | 0.030 | 0.003 | 0.029 | 0.003 | 0.024 | 0.003 | 0.024 | 0.003 |
| Member of a club | 0.184 | 0.012 | 0.151 | 0.013 | 0.144 | 0.013 | 0.150 | 0.014 |
| Mother's education |  |  |  |  |  |  |  |  |
| < High | -0.073 | 0.009 | -0.068 | 0.009 | -0.065 | 0.009 | -0.064 | 0.009 |
| > High | 0.142 | 0.007 | 0.142 | 0.008 | 0.129 | 0.008 | 0.131 | 0.008 |
| Missing | 0.030 | 0.012 | 0.028 | 0.012 | 0.027 | 0.012 | 0.027 | 0.012 |
| Mother's job |  |  |  |  |  |  |  |  |
| Professional | 0.036 | 0.009 | 0.035 | 0.009 | 0.031 | 0.009 | 0.030 | 0.009 |
| Other | -0.040 | 0.007 | -0.040 | 0.008 | -0.039 | 0.008 | -0.040 | 0.008 |
| Missing | -0.077 | 0.011 | -0.075 | 0.011 | -0.071 | 0.011 | -0.072 | 0.011 |
| Contextual effects |  |  |  |  |  |  |  |  |
| Female | -0.112 | 0.012 | -0.108 | 0.012 | -0.120 | 0.014 | -0.117 | 0.014 |
| Age | -0.051 | 0.003 | -0.015 | 0.004 | 0.025 | 0.006 | 0.026 | 0.006 |
| Hispanic | 0.058 | 0.017 | 0.078 | 0.017 | 0.082 | 0.020 | 0.082 | 0.020 |
| Race |  |  |  |  |  |  |  |  |
| Black | 0.015 | 0.016 | 0.048 | 0.017 | 0.072 | 0.020 | 0.076 | 0.020 |
| Asian | -0.065 | 0.022 | -0.087 | 0.023 | -0.123 | 0.027 | -0.121 | 0.028 |
| Other | -0.040 | 0.020 | -0.026 | 0.020 | -0.002 | 0.022 | -0.003 | 0.022 |
| Lives with both parents | -0.035 | 0.016 | -0.027 | 0.016 | -0.014 | 0.018 | -0.014 | 0.018 |
| Years in school | 0.017 | 0.004 | 0.003 | 0.005 | -0.007 | 0.006 | -0.007 | 0.006 |
| Member of a club | -0.134 | 0.027 | -0.110 | 0.027 | -0.078 | 0.030 | -0.094 | 0.031 |
| Mother's education |  |  |  |  |  |  |  |  |
| $<$ High | -0.035 | 0.017 | -0.008 | 0.017 | 0.024 | 0.019 | 0.024 | 0.019 |
| > High | 0.011 | 0.017 | -0.012 | 0.018 | -0.025 | 0.022 | -0.024 | 0.022 |
| Missing | -0.062 | 0.024 | -0.049 | 0.024 | -0.027 | 0.026 | -0.026 | 0.026 |
| Mother's job |  |  |  |  |  |  |  |  |
| Professional | -0.053 | 0.018 | -0.044 | 0.018 | -0.034 | 0.019 | -0.033 | 0.019 |
| Other | -0.088 | 0.014 | -0.059 | 0.014 | -0.025 | 0.016 | -0.026 | 0.016 |
| Missing | -0.090 | 0.021 | -0.047 | 0.022 | 0.007 | 0.024 | 0.006 | 0.024 |
|  |  |  |  |  | 0.280 |  | 0.279 |  |
| $\sigma_{\epsilon}^{2}$ | 0.505 |  | 0.510 |  | 0.057 |  | 0.059 |  |
| $\rho$ |  |  |  |  | 0.527 |  | 0.514 |  |
| Weak instrument F |  |  |  |  |  |  |  |  |
| Endogeneity Wald prob. |  |  |  |  |  |  |  |  |
| Sargan test prob. |  |  |  |  |  |  |  | 54 |

This table presents the estimation results of the proposed model after controlling for network endogeneity. The functions $h_{\eta}$ and $h_{\epsilon}$ are approximated by cubic B-splines, where $\mu_{0, s, i}^{o u t}$ and $\mu_{0, s, i}^{i n}$ are estimated using a logit model with individual fixed effects. The line "Endo. Wald prob." indicates the $p$-value of the Wald test of the significance of the plugged variables to control for endogeneity.

Table S.2: Estimation results controlling for network endogeneity: fixed effect approach with tensor products of B-spline approximations (full sample)

|  | Sandard model |  |  |  | Proposed structural model |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | No. knots: 0 |  | No. knots: 10 |  | No. knots: 0 |  | No. knots: 10 |  |
|  | Coef | Sd Err |
| Peer Effects | 0.586 | 0.033 | 0.692 | 0.037 | 0.826 | 0.047 | 0.834 | 0.049 |
| Own effects |  |  |  |  |  |  |  |  |
| Female | 0.17 | 0.006 | 0.174 | 0.006 | 0.169 | 0.006 | 0.171 | 0.006 |
| Age | -0.022 | 0.003 | -0.037 | 0.003 | -0.043 | 0.003 | -0.045 | 0.004 |
| Hispanic | -0.102 | 0.01 | -0.100 | 0.010 | -0.091 | 0.010 | -0.092 | 0.010 |
| Race |  |  |  |  |  |  |  |  |
| Black | -0.139 | 0.012 | -0.113 | 0.013 | -0.106 | 0.013 | -0.102 | 0.014 |
| Asian | 0.213 | 0.013 | 0.206 | 0.013 | 0.194 | 0.014 | 0.192 | 0.014 |
| Other | -0.024 | 0.011 | -0.029 | 0.011 | -0.031 | 0.011 | -0.029 | 0.011 |
| Lives with both parents | 0.102 | 0.007 | 0.095 | 0.007 | 0.090 | 0.007 | 0.089 | 0.007 |
| Years in school | 0.03 | 0.003 | 0.028 | 0.003 | 0.024 | 0.003 | 0.024 | 0.003 |
| Member of a club | 0.185 | 0.012 | 0.154 | 0.013 | 0.147 | 0.013 | 0.157 | 0.014 |
| Mother's education |  |  |  |  |  |  |  |  |
| < High | -0.073 | 0.009 | -0.066 | 0.009 | -0.065 | 0.009 | -0.062 | 0.009 |
| > High | 0.142 | 0.008 | 0.141 | 0.008 | 0.129 | 0.008 | 0.131 | 0.008 |
| Missing | 0.03 | 0.012 | 0.028 | 0.012 | 0.027 | 0.012 | 0.028 | 0.012 |
| Mother's job |  |  |  |  |  |  |  |  |
| Professional | 0.036 | 0.009 | 0.034 | 0.009 | 0.031 | 0.009 | 0.031 | 0.009 |
| Other | -0.04 | 0.007 | -0.040 | 0.008 | -0.039 | 0.008 | -0.039 | 0.008 |
| Missing | -0.076 | 0.011 | -0.076 | 0.011 | -0.071 | 0.011 | -0.071 | 0.011 |
| Contextual effects |  |  |  |  |  |  |  |  |
| Female | -0.112 | 0.012 | -0.107 | 0.012 | -0.120 | 0.014 | -0.120 | 0.014 |
| Age | -0.049 | 0.003 | -0.008 | 0.004 | 0.026 | 0.006 | 0.028 | 0.006 |
| Hispanic | 0.062 | 0.017 | 0.083 | 0.018 | 0.082 | 0.020 | 0.084 | 0.021 |
| Race |  |  |  |  |  |  |  |  |
| Black | 0.017 | 0.016 | 0.046 | 0.017 | 0.071 | 0.020 | 0.082 | 0.020 |
| Asian | -0.063 | 0.022 | -0.095 | 0.023 | -0.126 | 0.028 | -0.127 | 0.028 |
| Other | -0.037 | 0.02 | -0.022 | 0.020 | -0.002 | 0.022 | -0.001 | 0.022 |
| Lives with both parents | -0.035 | 0.016 | -0.025 | 0.016 | -0.015 | 0.018 | -0.015 | 0.018 |
| Years in school | 0.017 | 0.004 | 0.003 | 0.005 | -0.007 | 0.006 | -0.006 | 0.006 |
| Member of a club | -0.135 | 0.027 | -0.106 | 0.027 | -0.078 | 0.031 | -0.094 | 0.032 |
| Mother's education 0 |  |  |  |  |  |  |  |  |
| < High | -0.032 | 0.017 | -0.002 | 0.017 | 0.025 | 0.019 | 0.025 | 0.019 |
| > High | 0.008 | 0.017 | -0.016 | 0.018 | -0.025 | 0.022 | -0.030 | 0.023 |
| Missing | -0.061 | 0.024 | -0.046 | 0.024 | -0.027 | 0.026 | -0.025 | 0.026 |
| Mother's job |  |  |  |  |  |  |  |  |
| Professional | -0.053 | 0.018 | -0.040 | 0.018 | -0.034 | 0.019 | -0.033 | 0.019 |
| Other | -0.085 | 0.014 | -0.050 | 0.015 | -0.025 | 0.016 | -0.022 | 0.016 |
| Missing | -0.087 | 0.021 | -0.036 | 0.022 | 0.008 | 0.024 | 0.010 | 0.024 |
| $\begin{aligned} & \sigma_{\eta}^{2} \\ & \sigma_{\epsilon}^{2} \end{aligned}$ | 0.506 |  | 0.511 |  | $\begin{aligned} & 0.280 \\ & 0.055 \\ & 0.544 \\ & \hline \end{aligned}$ |  | $0.277$ |  |
|  |  |  | 0.056 |  |  |  |
| $\rho$ |  |  | 0.544 |  |  |  |
| Weak instrument F | 115 |  |  |  | 127 |  | 115 |  | 110 |  |
| Endogeneity Wald prob. | 0.000 |  |  |  | 0.000 |  | 0.000 |  | 0.000 |  |
| Sargan test prob. | 0.000 |  | $0.123$ |  | $0.324$ |  | $0.486$ |  |

This table presents the estimation results of the proposed model after controlling for the network endogeneity. The functions $h_{\eta}$ and $h_{\epsilon}$ are approximated by tensor products of cubic B-splines, where $\mu_{0, s, i}^{o u t}$ and $\mu_{0, s, i}^{i n}$ are estimated using a logit model with individual fixed effects. The line "Endo. Wald prob." indicates the $p$-value of the Wald test of the significance of the plugged variables to control for endogeneity.

Table S.3: Estimation results controlling for network endogeneity: Bayesian random effect approach with B-spline approximations (full sample)

|  | Sandard model |  |  |  | Proposed structural model |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | No. knots: 0 |  | No. knots: 10 |  | No. knots: 0 |  | No. knots: 10 |  |
|  | Coef | Sd Err |
| Peer Effects | 0.478 | 0.029 | 0.478 | 0.029 | 0.817 | 0.047 | 0.816 | 0.047 |
| Own effects |  |  |  |  |  |  |  |  |
| Female | 0.178 | 0.006 | 0.178 | 0.006 | 0.167 | 0.006 | 0.167 | 0.006 |
| Age | -0.016 | 0.003 | -0.016 | 0.003 | -0.044 | 0.003 | -0.044 | 0.003 |
| Hispanic | -0.101 | 0.01 | -0.101 | 0.010 | -0.091 | 0.010 | -0.091 | 0.010 |
| Race |  |  |  |  |  |  |  |  |
| Black | -0.119 | 0.012 | -0.120 | 0.012 | -0.109 | 0.013 | -0.109 | 0.013 |
| Asian | 0.217 | 0.013 | 0.217 | 0.013 | 0.194 | 0.014 | 0.194 | 0.014 |
| Other | -0.033 | 0.011 | -0.033 | 0.011 | -0.033 | 0.011 | -0.032 | 0.011 |
| Lives with both parents | 0.105 | 0.007 | 0.105 | 0.007 | 0.090 | 0.007 | 0.090 | 0.007 |
| Years in school | 0.031 | 0.003 | 0.031 | 0.003 | 0.025 | 0.003 | 0.025 | 0.003 |
| Member of a club | 0.168 | 0.012 | 0.167 | 0.012 | 0.152 | 0.012 | 0.151 | 0.012 |
| Mother's education |  |  |  |  |  |  |  |  |
| < High | -0.072 | 0.009 | -0.072 | 0.009 | -0.065 | 0.009 | -0.064 | 0.009 |
| > High | 0.156 | 0.007 | 0.156 | 0.007 | 0.130 | 0.008 | 0.131 | 0.008 |
| Missing | 0.03 | 0.012 | 0.030 | 0.012 | 0.025 | 0.012 | 0.026 | 0.012 |
| Mother's job |  |  |  |  |  |  |  |  |
| Professional | 0.036 | 0.009 | 0.036 | 0.009 | 0.031 | 0.009 | 0.031 | 0.009 |
| Other | -0.044 | 0.007 | -0.044 | 0.007 | -0.040 | 0.008 | -0.040 | 0.008 |
| Missing | -0.081 | 0.011 | -0.081 | 0.011 | -0.073 | 0.011 | -0.073 | 0.011 |
| Contextual effects |  |  |  |  |  |  |  |  |
| Female | -0.102 | 0.012 | -0.101 | 0.012 | -0.118 | 0.014 | -0.117 | 0.014 |
| Age | -0.072 | 0.004 | -0.072 | 0.004 | 0.026 | 0.006 | 0.025 | 0.006 |
| Hispanic | 0.044 | 0.017 | 0.044 | 0.017 | 0.080 | 0.020 | 0.081 | 0.020 |
| Race |  |  |  |  |  |  |  |  |
| Black | -0.004 | 0.015 | -0.004 | 0.016 | 0.071 | 0.019 | 0.070 | 0.019 |
| Asian | -0.033 | 0.022 | -0.033 | 0.022 | -0.124 | 0.028 | -0.122 | 0.028 |
| Other | -0.045 | 0.02 | -0.046 | 0.020 | -0.004 | 0.022 | -0.003 | 0.022 |
| Lives with both parents | -0.034 | 0.016 | -0.034 | 0.016 | -0.012 | 0.018 | -0.011 | 0.018 |
| Years in school | 0.029 | 0.004 | 0.029 | 0.004 | -0.007 | 0.006 | -0.007 | 0.006 |
| Member of a club | -0.141 | 0.028 | -0.140 | 0.028 | -0.082 | 0.029 | -0.084 | 0.029 |
| Mother's education |  |  |  |  |  |  |  |  |
| < High | -0.048 | 0.016 | -0.049 | 0.016 | 0.022 | 0.019 | 0.022 | 0.019 |
| > High | 0.033 | 0.017 | 0.033 | 0.017 | -0.023 | 0.022 | -0.023 | 0.022 |
| Missing | -0.063 | 0.024 | -0.064 | 0.024 | -0.026 | 0.026 | -0.026 | 0.026 |
| Mother's job |  |  |  |  |  |  |  |  |
| Professional | -0.057 | 0.018 | -0.057 | 0.018 | -0.032 | 0.019 | -0.031 | 0.019 |
| Other | -0.109 | 0.014 | -0.109 | 0.014 | -0.025 | 0.016 | -0.025 | 0.016 |
| Missing | -0.117 | 0.021 | -0.117 | 0.021 | 0.006 | 0.024 | 0.006 | 0.024 |
| $\sigma_{\eta}^{2}$$\sigma_{\epsilon}^{2}$ |  |  |  |  | 0.280 |  | 0.279 |  |
|  | 0.500 |  | 0.501 |  | 0.059 |  | 0.060 |  |
| $\rho$ |  |  |  |  | 0.508 |  | 0.506 |  |
| Weak instrument F | 190 |  | 190 |  | 115 |  | 114 |  |
| Endogeneity Wald prob. | 0.000 |  | 0.000 |  | 0.000 |  | 0.000 |  |
| Sargan test prob. | 0.000 |  | 0.000 |  | 0.540 |  | 0.502 |  |

This table presents the estimation results of the proposed model after controlling for the network endogeneity. The functions $h_{\eta}$ and $h_{\epsilon}$ are approximated by cubic B-splines, where $\mu_{s, i}^{0, i n}$ and $\mu_{0, s, i}^{o u t}$ are estimated using the Bayesian random effect model. The line "Endo. Wald prob." indicates the $p$-value of the Wald test of the significance of the plugged variables to control for endogeneity.

Table S. 4 presents the estimation results for the data excluding "fully isolated" students and without controlling for network endogeneity. Model 3 is the standard linear-in-means model by approximating student effort by GPA, and Model 4 is based on our approach.

Table S.4: Estimation results without controlling for network endogeneity (sample excluding "fully isolated" students)

|  | Model 3' |  | Model 4' |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Coef | Sd Err | Coef | Sd Err |
| Peer Effects | 0.561 | 0.030 | 0.878 | 0.044 |
| Own effects |  |  |  |  |
| Female | 0.182 | 0.006 | 0.165 | 0.007 |
| Age | -0.008 | 0.004 | -0.045 | 0.004 |
| Hispanic | -0.096 | 0.011 | -0.086 | 0.011 |
| Race |  |  |  |  |
| Black | -0.113 | 0.013 | -0.102 | 0.015 |
| Asian | 0.199 | 0.014 | 0.173 | 0.015 |
| Other | -0.030 | 0.011 | -0.029 | 0.012 |
| Lives with both parents | 0.098 | 0.008 | 0.083 | 0.008 |
| Years in school | 0.032 | 0.003 | 0.023 | 0.003 |
| Member of a club | 0.169 | 0.013 | 0.150 | 0.013 |
| Mother's education |  |  |  |  |
| < High | -0.072 | 0.009 | -0.062 | 0.009 |
| > High | 0.146 | 0.008 | 0.118 | 0.008 |
| Missing | 0.017 | 0.013 | 0.013 | 0.013 |
| Mother's job |  |  |  |  |
| Professional | 0.040 | 0.009 | 0.034 | 0.010 |
| Other | -0.035 | 0.008 | -0.031 | 0.008 |
| Missing | -0.070 | 0.012 | -0.061 | 0.012 |
| Contextual effects |  |  |  |  |
| Female | -0.122 | 0.012 | -0.127 | 0.013 |
| Age | -0.082 | 0.004 | 0.028 | 0.006 |
| Hispanic | 0.049 | 0.017 | 0.086 | 0.021 |
| Race |  |  |  |  |
| Black | -0.010 | 0.017 | 0.055 | 0.021 |
| Asian | -0.051 | 0.022 | -0.129 | 0.028 |
| Other | -0.040 | 0.020 | -0.001 | 0.022 |
| Lives with both parents | -0.047 | 0.016 | -0.021 | 0.018 |
| Years in school | 0.032 | 0.004 | -0.008 | 0.006 |
| Member of a club | -0.160 | 0.028 | -0.091 | 0.029 |
| Mother's education |  |  |  |  |
| < High | -0.043 | 0.016 | 0.026 | 0.019 |
| > High | 0.014 | 0.017 | -0.036 | 0.021 |
| Missing | -0.068 | 0.024 | -0.031 | 0.026 |
| Mother's job |  |  |  |  |
| Professional | -0.062 | 0.018 | -0.036 | 0.020 |
| Other | -0.103 | 0.014 | -0.021 | 0.016 |
| Missing | -0.110 | 0.021 | 0.010 | 0.024 |
| $\sigma_{n}^{2}$ | 0.493 | 0.292 |  |  |
| $\sigma_{\epsilon}^{2}$ |  | 0.047 |  |  |
| $\rho$ |  | 0.485 |  |  |
| Weak instrument F | 158.76 |  | 105.47 |  |
| Sargan test prob. | 0.000 |  | 0.493 |  |

Table S. 5 presents the estimation results after controlling for network endogeneity using the data excluding "fully isolated" students.

Table S.5: Estimation results after controlling for network endogeneity (sample excluding "fully isolated" students)

|  | Sandard model |  |  |  | Proposed structural model |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | No. knots: 0 |  | No. knots: 10 |  | No. knots: 0 |  | No. knots: 10 |  |
|  | Coef | Sd Err |
| Peer Effects | 0.649 | 0.036 | 0.728 | 0.039 | 0.846 | 0.048 | 0.854 | 0.050 |
| Own effects |  |  |  |  |  |  |  |  |
| Female | 0.175 | 0.007 | 0.176 | 0.007 | 0.172 | 0.007 | 0.174 | 0.007 |
| Age | -0.022 | 0.004 | -0.035 | 0.004 | -0.046 | 0.004 | -0.047 | 0.004 |
| Hispanic | -0.097 | 0.011 | -0.094 | 0.011 | -0.086 | 0.011 | -0.086 | 0.011 |
| Race |  |  |  |  |  |  |  |  |
| Black | -0.116 | 0.014 | -0.092 | 0.014 | -0.074 | 0.015 | -0.072 | 0.016 |
| Asian | 0.190 | 0.014 | 0.189 | 0.014 | 0.171 | 0.015 | 0.168 | 0.015 |
| Other | -0.029 | 0.011 | -0.031 | 0.011 | -0.036 | 0.012 | -0.034 | 0.012 |
| Lives with both parents | 0.093 | 0.008 | 0.087 | 0.008 | 0.082 | 0.008 | 0.081 | 0.008 |
| Years in school | 0.027 | 0.003 | 0.024 | 0.003 | 0.021 | 0.003 | 0.020 | 0.003 |
| Member of a club | 0.195 | 0.013 | 0.166 | 0.014 | 0.168 | 0.014 | 0.173 | 0.015 |
| Mother's education |  |  |  |  |  |  |  |  |
| < High | -0.068 | 0.009 | -0.062 | 0.009 | -0.058 | 0.009 | -0.057 | 0.009 |
| > High | 0.135 | 0.008 | 0.134 | 0.008 | 0.125 | 0.008 | 0.128 | 0.008 |
| Missing | 0.015 | 0.013 | 0.015 | 0.013 | 0.013 | 0.013 | 0.014 | 0.013 |
| Mother's job |  |  |  |  |  |  |  |  |
| Professional | 0.036 | 0.009 | 0.034 | 0.009 | 0.032 | 0.010 | 0.032 | 0.010 |
| Other | -0.035 | 0.008 | -0.035 | 0.008 | -0.034 | 0.008 | -0.034 | 0.008 |
| Missing | -0.068 | 0.012 | -0.067 | 0.012 | -0.063 | 0.012 | -0.063 | 0.012 |
| Contextual effects |  |  |  |  |  |  |  |  |
| Female | -0.126 | 0.012 | -0.119 | 0.012 | -0.126 | 0.014 | -0.126 | 0.015 |
| Age | -0.048 | 0.004 | -0.008 | 0.004 | 0.031 | 0.006 | 0.032 | 0.006 |
| Hispanic | 0.064 | 0.018 | 0.078 | 0.018 | 0.082 | 0.021 | 0.083 | 0.021 |
| Race |  |  |  |  |  |  |  |  |
| Black | 0.005 | 0.017 | 0.030 | 0.018 | 0.045 | 0.021 | 0.057 | 0.021 |
| Asian | -0.071 | 0.023 | -0.096 | 0.024 | -0.118 | 0.028 | -0.117 | 0.029 |
| Other | -0.031 | 0.020 | -0.021 | 0.020 | -0.001 | 0.022 | 0.000 | 0.022 |
| Lives with both parents | -0.039 | 0.016 | -0.028 | 0.016 | -0.017 | 0.018 | -0.018 | 0.018 |
| Years in school | 0.019 | 0.005 | 0.005 | 0.005 | -0.005 | 0.006 | -0.005 | 0.006 |
| Member of a club | -0.144 | 0.027 | -0.115 | 0.027 | -0.086 | 0.031 | -0.102 | 0.032 |
| Mother's education |  |  |  |  |  |  |  |  |
| < High | -0.022 | 0.017 | 0.002 | 0.017 | 0.025 | 0.019 | 0.025 | 0.019 |
| > High | -0.005 | 0.018 | -0.021 | 0.018 | -0.030 | 0.022 | -0.035 | 0.023 |
| Missing | -0.058 | 0.024 | -0.044 | 0.024 | -0.027 | 0.026 | -0.027 | 0.026 |
| Mother's job |  |  |  |  |  |  |  |  |
| Professional | -0.055 | 0.018 | -0.044 | 0.018 | -0.036 | 0.019 | -0.034 | 0.019 |
| Other | -0.078 | 0.014 | -0.049 | 0.014 | -0.024 | 0.016 | -0.022 | 0.016 |
| Missing | -0.073 | 0.021 | -0.031 | 0.022 | 0.010 | 0.024 | 0.011 | 0.024 |
|  |  |  |  |  | 0.289 |  | 0.285 |  |
| $\sigma_{\epsilon}^{2}$ | 0.498 |  | 0.504 |  | 0.058 |  | 0.059 |  |
| $\rho$ |  |  |  |  | 0.396 |  | 0.395 |  |
| Weak instrument F |  |  |  |  |  |  |  |  |
| Endogeneity Wald prob. |  |  |  |  |  |  |  |  |
| Sargan test prob. |  |  |  |  |  |  |  |  |


[^0]:    ${ }^{1}$ See Horn, R. A. and C. R. Johnson (2012): Matrix analysis, Cambridge university press.

[^1]:    ${ }^{2}$ In the literature on generalized additive models, a variable selection approach is used to eliminate irrelevant explanatory variables among the new regressors. This approach requires a penalty function and tuning parameters that are chosen using cross-validation. This goes beyond the scope of this paper because most cross-validation methods need $\mu_{0, s, i}^{o u t}$ and $\mu_{0, s, i}^{i n}$ to be independent across $i$, which is not the case here. In our empirical analysis, there is not much difference between the results for $\zeta=0$ and $\zeta=10$. Consequently, we do not really need to care about the number of new regressors.

[^2]:    ${ }^{3}$ See Albert, J. H., \& Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American statistical Association, 88(422), 669-679.

