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C Online Appendix

C.1 Some Basic Properties
In this section, we state and prove some basic properties used throughout the paper.

P1 Let [F,, £!/\/nl, £57/\/nNT] be the orthonormal matrix of J,, where the columns in F, are
eigenvectors of J, corresponding to the eigenvalue one. |F;|l2 = 1, where ||.||2 is the operator

norm induced by the ¢2-norm.

Proof. ||Fsll2 = max_ vV (Fsuy) (Fsuy) = maxlx/u’sus because F.F = I, _o, the identity ma-
uus= uus=

trix of dimension ns — 2. Thus, |F|j2 = 1. O
P2 For any n, x n, matrix, By = [bs ;;], [bs,is| < [|Bs]|2-
Proof. Let u, be the ng-vector of zeros except for the i-th element, which is one. Note that |u,||2 =

1. The i-th entry of Byu is by ;;. As a result, |bs ;| < 4 /Z?il biji =4/(Bsu)(Bsu) < ||Bgll- O

P.3 If B, is a symmetric matrix of dimension ns x ng, then ||B;|l2 = Tmax(Bs), where mpyax(.) is the

largest eigenvalue.

Proof. Bz = max +/(Bou.)'(Bous) = max y/u(Bu, = \/Miax(B2) = Tmax(Ba). m
uus= uu,=

P4 If B, is a symmetric matrix of dimension ns x ng, then myax (F.BsFy) < mpax(Bs).
Proof. Tmax(F,BFs) = ;nai(lu;F’SBstus = ;nazcl(FSus)’Bs(Fsus). As (Fyuy) (Fsuy) = 1,

then max (F,u,)By(F,u,) < max w/B,u, = Tnax(By). O

s s=1 sUs=



P5 Let B, ; and B » be n; x n, matrices. If B, ; and B, are absolutely bounded in row and column
sums, then B; ; B, 2 is absolutely bounded in row and column sums.
Proof. Ttis sufficient to show that the entries of B, 1B; 2u, and u, B, 1 B; 2 are absolutely bounded
for all ns-vector us; whose entries take —1 or 1. Assume that B ; is absolutely bounded in
row sum by Cj; and absolutely bounded in the row sum by R, ;. Assume also that B, is
absolutely bounded in the row sum by C; » and absolutely bounded in row sum by Ry 2. We
have B; su; < Rp2l,, and B, 11, < Rp 11, , where < is the pointwise inequality < and 1,,
is an ng-vector of ones. Thus, B, 1B;ous < Rp2Bs11,, < Ry1Rp21,,. Hence, B; 1B is
bounded in row sum. Analogously, we have u,B,; < C;:1;, and 1], B,> < (1], . Thus,

u,B, 1B, 2 < Cy11], B, < (10 21;, . Hence, B, 1B, 2 is bounded in column sum. O

P.6 If an n, x ng matrix B, is absolutely bounded in both row and column sums, then |Tpax(Bs)| < o0
and ||B;l|2 < oo.
Proof. |mmax(Bs)| < oo is a direct implication of the Gershgorin circle theorem.
Besides, ||B;|l2 = 1/Tmax(B,Bs) < o because BBy is absolutely bounded in row and column
sums by P.5. O

P7 Let B, = [b;;], Bs = [bi;] be ny x n, matrices. Let G = diag(Gy,...,Gg), where diag is the
block diagonal operator. Assume that [, €] are independent of G, and X,. Let pa, = E(1?,),
H2e = E(ggz)/ Han = E(n?,i)r Hae = E(’fé,i)r Ho2 = E(n?,ﬁ?,i)f H31 = ]E(Tlg,ﬁs,i)/ and 3 = E(ns,ﬁi’,i)-
V(0 Ban,) = (nan — 3p3,) X520 b + 13, (Tr(BsBY) + Tr(BY)),

V(eiBaes) = (pac — 33.) 252 b + 3. (Tr(B,BY) + Tr(B3)),

V(eiBan,) = (22 — Bpanhae) 252 bF; + panhae (1= p*)(Te(By))? + Tr(B,BY) + p* Tr(B3)),
Cov(n,Bym,, eiBum,) = (131 — 3poioc) X2, bisbii + poo(Tr(B,B)) + Tr(B,By)),
Cov(e'Bses,n.Bses) = (13 — 3p0,02) X0 bisbii + poyo?(Tr(B,B) + Tr(B,B,)),

Cov(n,Bsn,, €. Byses) = (oo — 20> fron tiae — pantiae) Yoy bisbii + p*paniac (Tr(BBL) + Tr(B,B,)).

The proof of the lemma is straightforward using the expression of variance and covariance.

C.2 Supplementary Results on the Identification of the Variance Parameters

In this section, we use different notations for the parameters and their true values; that is their values
in the data-generating process. We denote by 1, 0o, oo, and pg the true values of v, o, o, and p,

respectively. We must show that V (62(7, p)|G) = 0,(1).
2 L., — MGs)n, + 62e5)F o (Mo, 7, p)FL((Tn, — MNoGs)n, + 6%€;)
n— 25

We have 6%(r, p) = . Thus,

1See Horn, R. A. and C. R. Johnson (2012): Matrix analysis, Cambridge university press.



S
 / 4 AN 8 1
V(62(r,p)|G) = e 25 ; M,n,|G) + 40*V (7' . M,e,|G) + 65V (e M,e,|G)+

. . C.12
46% Cov (', Mm,, ' M,e,|G) + 26* Cov(n,M.n,, e M,e,|G)+ e

46% Cov (e, Mes, 7. Mses|G)),

where M, = F, Q7 (Ao, 7, p)F,, My = (I, — A0G)'M,, and M, = M,(L,, — \oG,).
AS Tiin (Qs(No, 7, p) is bounded away from zero (Assumption A.2), we have |mmax (25 (Ao, 7, p)| =
0,(1). Thus, 1rnsax||ﬂS (Ao, 7, p)|l2 = Op(1) by P.3. This implies that m;quMng =0, 1),mbax||Ms||2 =
0,(1), and m3X||MS||2 = 0p(1) because ||F;||2 = 1 and ||I,,, — Ao Gs|l2 = O,(1) by Pé6.
We now need to show that the sum over s of each term of the variance (C.12) is 0,,((n — 25)?). By P2,
the trace of any product of matrices chosen among M, My, and M, is Oyp(ns) and thus, o,((n—2S5)?).
For example, | Tr(M,M,)| < 7| MM,z < 7| Msl2[|[Msl2 = Op(ns) = 0p((n — 25)2). On the other
hand, ¥5_ (Tr(M.))2 = 0,(£5_, n?) = o,((n — 25)2). Moreover, 3, m2 < n,|M. |3 = O,(n.) =
0p((n —25)?) by P2. Analogously, >."* | my;m; = o,((n — 25)?). As aresult, V(62(r, p)|G) = 0,(1).
The proof implies, by Chebyshev inequality, that 62(7, p) — E (62(7, p)|G1, ..., Gg) converges in
probability to zero. The convergence is uniform in the space of (7, p) because E (62(7, p)|G+, . .., Gs)
and 62(, p) can be expressed as a polynomial function in (7, p). Thus, 1 (L.(7, p)—L¥(7, p)) converges

uniformly to zero. This proof also implies that plim 62 (7, pg) = o3., where 75 = O0n/00c.

C.3 Necessary Conditions for the Identification of (o2, 7, p)

As X # 0 (Assumption 3.2) and is identified, E(v,v’|G) implies a unique (o), o, p) if J5, Js(Gs +
G/)J, and J;G;G.J; are linearly independent. We present a simple subnetwork structure that veri-
fies this condition.

Let C; be an arbitrary n, x ns matrix. Unless otherwise stated, we use C, ;; to denote the (i, j)-th
entry of C,. Assume that i and j are from the subset of students who have friends in the school s.
The (i, j)-th entry of J,CyJ; is Csi5 — Cyej — Coia + Cyae, where Gy o5 = (1/n)7) 302 vr Coig,
Caio = (1/n") Xittysr Coatyand Cyan = (1/(n)?) Sieyns Co

Let G, = G.G/ and iy, ..., is be four students from V! who are not directly linked and where only
two of them have common friends. Without loss of generality, assume that i; and i3 have common
friends. For any i € {i1, i2} and j € {i3, is}, Js;5 = —1/nd!, G54 = 0, and G/, ij = 0. Moreover,
ésﬂ-j = 0 except for the pair (i;, i3), who have common friends. Let Ly = b1J, + b2Js(Gs + G,)Js +
b3JsGsG.J,; = 0 for some by, bg, by € R. We have L ;; = —b1 /0 —b2(Gyij — Gy ej — G ie + G o0 +
Gl — Gl — Gl +G. ) +b3(Gyij — Gyej — Gyia + Gyaa). This implies that Ly ;, 4, + L iyi, —

EXY) s, s,i®



Lg.iyis — Lsiyi, = b3Gos i,4,. Thus, if the combination L is zero, then b3 = 0.

Let ji, ..., js be four students from V!, where only two of them are directly linked (mutually or not),
and the others are not directly linked. Without loss of generality, assume that only j; to js are linked,
that is, for any ¢ € {j1, jo} and j € {js, ja}, Gs; = 0 and G/,

5,13

= 0 except for the pairs (j1, j3) and
(3, j1)- As by = 0, we have Ly j, j; + Ls j,j, — Ls jojs — Lsjiju = 02(Gs jyjs + G, 5,)- Thusif Ly is
zero, then by = 0, and it follows that b; = 0.

Asaresult, J;, J,(G; + G)J;, and J, GG/ J, are linearly independent if, in some school s, there are
four students from V' who are not directly linked and only two of them have common friends, and
if in some school s, there are four students from V!, where only two of them are linked.

We present an example of this condition by adding three nodes to Figure 1 with two additional links

(see Figure C.1). There are no links within the nodes iy, i4, 75, and ig, and only i5 and ig have common

a friends (i7). Besides, only i5 and ¢ are linked within the nodes i1, 75, i5, and i7.
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Figure C.1: [llustration of the identification
Note: — means that the node on the right side is a friend of the node on the left side.

Many other situations lead to b; = by = b3 = 0. In practice, one can easily verify if J,, J (G + G)J,

and J;G ;G J are linearly independent.

C.4 Asumptotic Normality in the Case of Endogenous Networks

The specification controlling for network endogeneity is:
ys,i = ’iéVIEé\)[ZI + "‘@é(l - EQIZI) + gs,iys + X;iﬁ + gijssl + hsﬂ + ﬁs7i7 (C13)

where g ; = ho (ug4') + ' (u2%). We replace p24" and 11 with their estimator and approximate the

functions h°** and h*" with cubic B-spline approximations. Specifically, we approximate h®*(u24")
by cubic polynomials on ten different intervals covering the range of 1.2%‘. The intervals are defined
so that each comprises approximately the same share of observations. We also apply this approach
to A" (ul"). Given the number of intervals and the degree of the polynomials, this approach results
in approximating hs; by a combination of 26 variables, called bases, that are computed from the

estimates of p2% and ™.



Let XS be the matrix of the new 26 bases. The approximation of h ; is xf” B, where x, ; is the i-th
row of XS and (3, is a parameter to be estimate. Let R, = [Rs,J SXS] be the new design matrix. We
keep the same instrument matrix J;G2X; for J;G,y;. We define 7, = [J.G2X, X, JSXS], R'Z =
Y RLZ, 27 =Y 27, and Z'y = Y7 Z/J.y,. Let I' be the estimator of the coefficients
associated with R;ie., I' = (R'Z)(Z'Z)"Y(R'Z)) " (R'Z)(Z'Z)" (Z'y).

The regularity assumption we need for the asymptotic normality is Zf=1 7/ (hy — X.B3,,)/v/n =
op(1), where hy = (hg1, ..., hsp,) and Bh is the estimator of the coefficients associated with X.
A similar condition is also imposed by Johnsson and Moon (2021) (see Lipschitz condition in their
Assumption 8). It holds if the approximation error of h,; by X3, converges at some rate to zero.
Under this condition T' is normally distributed with the asymptotic distribution w The

n
matrices B and D are defined as the original B and D, where R, and Z, are replaced by R, and Z,.
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