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C Online Appendix

C.1 Some Basic Properties

In this section, we state and prove some basic properties used throughout the paper.

P.1 Let rFs, ℓ
I
s{

a

nI
s, ℓ

NI
s {

a

nNI
s s be the orthonormal matrix of Js, where the columns in Fs are

eigenvectors of Js corresponding to the eigenvalue one. ∥Fs∥2 “ 1, where ∥.∥2 is the operator

norm induced by the ℓ2-norm.

Proof. ∥Fs∥2 “ max
u1

sus“1

a

pFsusq1pFsusq “ max
u1

sus“1

a

u1
sus because F1

sFs “ Ins´2, the identity ma-

trix of dimension ns ´ 2. Thus, ∥Fs∥2 “ 1.

P.2 For any ns ˆ ns matrix, Bs “ rbs,ijs, |bs,ii| ď ∥Bs∥2.

Proof. Let us be the ns-vector of zeros except for the i-th element, which is one. Note that ∥us∥2 “

1. The i-th entry of Bsu is bs.ii. As a result, |bs,ii| ď

b

řns

j“1 b
2
s,ji “

a

pBsuq1pBsuq ď ∥Bs∥2.

P.3 If Bs is a symmetric matrix of dimension ns ˆ ns, then ∥Bs∥2 “ πmaxpBsq, where πmaxp.q is the

largest eigenvalue.

Proof. ∥Bs∥2 “ max
u1

sus“1

a

pBsusq1pBsusq “ max
u1

sus“1

a

u1
sB

2
sus “

a

πmaxpB2
sq “ πmaxpBsq.

P.4 If Bs is a symmetric matrix of dimension ns ˆ ns, then πmaxpF1
sBsFsq ď πmaxpBsq.

Proof. πmaxpF1
sBsFsq “ max

u1
sus“1

u1
sF

1
sBsFsus “ max

u1
sus“1

pFsusq1BspFsusq. As pFsusq1pFsusq “ 1,

then max
u1

sus“1
pFsusq1BspFsusq ď max

u1
sus“1

u1
sBsus “ πmaxpBsq.
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P.5 Let Bs,1 and Bs,2 be ns ˆns matrices. If Bs,1 and Bs,2 are absolutely bounded in row and column

sums, then Bs,1Bs,2 is absolutely bounded in row and column sums.

Proof. It is sufficient to show that the entries of Bs,1Bs,2us and u1
sBs,1Bs,2 are absolutely bounded

for all ns-vector us whose entries take ´1 or 1. Assume that Bs,1 is absolutely bounded in

row sum by Cb,1 and absolutely bounded in the row sum by Rb,1. Assume also that Bs,2 is

absolutely bounded in the row sum by Cb,2 and absolutely bounded in row sum by Rb,2. We

have Bs,2us ĺ Rb,21ns
and Bs,11ns

ĺ Rb,11ns
, where ĺ is the pointwise inequality ď and 1ns

is an ns-vector of ones. Thus, Bs,1Bs,2us ĺ Rb,2Bs,11ns
ĺ Rb,1Rb,21ns

. Hence, Bs,1Bs,2 is

bounded in row sum. Analogously, we have u1
sBs,1 ĺ Cb,11

1
ns

and 11
ns
Bs,2 ĺ Cb,21

1
ns

. Thus,

u1
sBs,1Bs,2 ĺ Cb,11

1
ns
Bs,2 ĺ Cb,1Cb,21

1
ns

. Hence, Bs,1Bs,2 is bounded in column sum.

P.6 If an ns ˆns matrix Bs is absolutely bounded in both row and column sums, then |πmaxpBsq| ă 8

and ∥Bs∥2 ă 8.

Proof. |πmaxpBsq| ă 8 is a direct implication of the Gershgorin circle theorem.1

Besides, ∥Bs∥2 “
a

πmaxpB1
sBsq ă 8 because B1

sBs is absolutely bounded in row and column

sums by P.5.

P.7 Let Bs “ rbijs, 9Bs “ r9bijs be ns ˆ ns matrices. Let G “ diagpG1, . . . ,GSq, where diag is the

block diagonal operator. Assume that rηs, εss are independent of Gs and Xs. Let µ2η “ Epη2s,iq,

µ2ϵ “ Epε2s,iq, µ4η “ Epη4s,iq, µ4ϵ “ Epε4s,iq, µ22 “ Epη2s,iε
2
s,iq, µ31 “ Epη3s,iεs,iq, and µ13 “ Epηs,iε

3
s,iq.

Vpη1
sBsηsq “ pµ4η ´ 3µ2

2ηq
řns

i“1 b
2
ii ` µ2

2ηpTrpBsB
1
sq ` TrpB2

sqq,

Vpε1
sBsεsq “ pµ4ϵ ´ 3µ2

2ϵq
řns

i“1 b
2
ii ` µ2

2ϵpTrpBsB
1
sq ` TrpB2

sqq,

Vpε1
sBsηsq “ pµ22 ´ 3µ2ηµ2ϵq

řns

i“1 b
2
ii ` µ2ηµ2ϵ

`

p1 ´ ρ2qpTrpBsqq2 ` TrpBsB
1
sq ` ρ2 TrpB2

sq
˘

,

Covpη1
sBsηs, ε

1
s

9Bsηsq “ pµ31 ´ 3ρσ3
ησϵq

řns

i“1 bii
9bii ` ρσ3

ησϵpTrpBs
9B1
sq ` TrpBs

9Bsqq,

Covpε1
sBsεs,η

1
s

9Bsεsq “ pµ13 ´ 3ρσησ
3
ϵ q

řns

i“1 bii
9bii ` ρσησ

3
ϵ pTrpBs

9B1
sq ` TrpBs

9Bsqq,

Covpη1
sBsηs, ε

1
sBsεsq “ pµ22 ´2ρ2µ2ηµ2ϵ ´µ2ηµ2ϵq

řns

i“1 bii
9bii `ρ2µ2ηµ2ϵpTrpBs

9B1
sq`TrpBs

9Bsqq.

The proof of the lemma is straightforward using the expression of variance and covariance.

C.2 Supplementary Results on the Identification of the Variance Parameters

In this section, we use different notations for the parameters and their true values; that is their values

in the data-generating process. We denote by ψ0, σ0η , σ0ϵ, and ρ0 the true values of ψ, ση , σϵ, and ρ,

respectively. We must show that V
`

σ̂2
ϵ pτ, ρq|G

˘

“ opp1q.

We have σ̂2
ϵ pτ, ρq “

S
ÿ

s“1

ppIns ´ λ0Gsqηs ` δ2εsq1FsΩ
´1
s pλ0, τ, ρqF1

sppIns ´ λ0Gsqηs ` δ2εsq

n ´ 2S
. Thus,

1See Horn, R. A. and C. R. Johnson (2012): Matrix analysis, Cambridge university press.
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Vpσ̂2
ϵ pτ, ρq|Gq “

1

pn ´ 2Sq2

S
ÿ

s“1

`

Vpη1
s

:Msηs|Gq ` 4δ4Vpη1
s

9Msεs|Gq ` δ8Vpε1
sMsεs|Gq`

4δ2 Covpη1
s

:Msηs,η
1
s

9Msεs|Gq ` 2δ4 Covpη1
s

:Msηs, ε
1
sMsεs|Gq`

4δ6 Covpε1
sMsεs,η

1
s

9Msεs|Gq
˘

,

(C.12)

where Ms “ FsΩ
´1
s pλ0, τ, ρqF1

s, 9Ms “ pIns
´ λ0Gsq1Ms, and :Ms “ 9MspIns

´ λ0Gsq.

As πminpΩspλ0, τ, ρq is bounded away from zero (Assumption A.2), we have |πmaxpΩ´1
s pλ0, τ, ρq| “

Opp1q. Thus, max
s

∥Ω´1
s pλ0, τ, ρq∥2 “ Opp1q by P.3. This implies that max

s
∥Ms∥2 “ Opp1q, max

s
∥ 9Ms∥2 “

Opp1q, and max
s

∥ :Ms∥2 “ Opp1q because ∥Fs∥2 “ 1 and ∥Ins
´ λ0Gs∥2 “ Opp1q by P.6.

We now need to show that the sum over s of each term of the variance (C.12) is opppn ´ 2Sq2q. By P.2,

the trace of any product of matrices chosen among Ms, 9Ms, and :Ms is Oppnsq and thus, opppn´2Sq2q.

For example, |TrpMs
9Msq| ď ns∥Ms

9Ms∥2 ď ns∥Ms∥2∥ 9Ms∥2 “ Oppnsq “ opppn ´ 2Sq2q. On the other

hand,
řS

s“1pTrpMsqq2 “ Opp
řS

s“1 n
2
sq “ opppn ´ 2Sq2q. Moreover,

řns

i“1 m
2
ii ď ns∥Ms∥22 “ Oppnsq “

opppn ´ 2Sq2q by P.2. Analogously,
řns

i“1 mii 9mii “ opppn ´ 2Sq2q. As a result, Vpσ̂2
ϵ pτ, ρq|Gq “ opp1q.

The proof implies, by Chebyshev inequality, that σ̂2
ϵ pτ, ρq ´ E

`

σ̂2
ϵ pτ, ρq|G1, . . . ,GS

˘

converges in

probability to zero. The convergence is uniform in the space of pτ, ρq because E
`

σ̂2
ϵ pτ, ρq|G1, . . . ,GS

˘

and σ̂2
ϵ pτ, ρq can be expressed as a polynomial function in pτ, ρq. Thus, 1

n pLcpτ, ρq´L˚
c pτ, ρqq converges

uniformly to zero. This proof also implies that plim σ̂2
ϵ pτ0, ρ0q “ σ2

0ϵ, where τ0 “ σ0η{σ0ϵ.

C.3 Necessary Conditions for the Identification of pσ2
ϵ , τ, ρq

As λ ‰ 0 (Assumption 3.2) and is identified, Epvsv
1
s|Gsq implies a unique pση, σϵ, ρq if Js, JspGs `

G1
sqJs and JsGsG

1
sJs are linearly independent. We present a simple subnetwork structure that veri-

fies this condition.

Let Cs be an arbitrary ns ˆ ns matrix. Unless otherwise stated, we use Cs,ij to denote the pi, jq-th

entry of Cs. Assume that i and j are from the subset of students who have friends in the school s.

The pi, jq-th entry of JsCsJs is Cs,ij ´ Ĉs,‚j ´ Ĉs,i‚ ` Ĉs,‚‚, where Ĉs,‚j “ p1{nNI
s q

řns

kPVNI
s

Cs,kj ,

Ĉs,i‚ “ p1{nNI
s q

řns

lPVNI
s

Cs,il, and Ĉs,‚‚ “ p1{pnNI
s q2q

řns

k,lPVNI
s

Cs,kl.

Let G̃s “ GsG
1
s and i1, . . . , i4 be four students from VNI

s who are not directly linked and where only

two of them have common friends. Without loss of generality, assume that i1 and i3 have common

friends. For any i P ti1, i2u and j P ti3, i4u, Js,ij “ ´1{nNI
s , Gs,ij “ 0, and G1

s,ij “ 0. Moreover,

G̃s,ij “ 0 except for the pair pii, i3q, who have common friends. Let Ls “ b1Js ` b2JspGs ` G1
sqJs `

b3JsGsG
1
sJs “ 0 for some b1, b2, b3 P R. We have Ls,ij “ ´b1{nNI

s ´ b2pGs,ij ´Gs,‚j ´Gs,i‚ `Gs,‚‚ `

G1
s,ij ´ G1

s,‚j ´ G1
s,i‚ ` G1

s,‚‚q ` b3pG̃s,ij ´ G̃s,‚j ´ G̃s,i‚ ` G̃s,‚‚q. This implies that Ls,i1i3 ` Ls,i2i4 ´
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Ls,i2i3 ´ Ls,i1i4 “ b3G̃s,i1i3 . Thus, if the combination Ls is zero, then b3 “ 0.

Let j1, . . . , j4 be four students from VNI
s , where only two of them are directly linked (mutually or not),

and the others are not directly linked. Without loss of generality, assume that only j1 to j3 are linked,

that is, for any i P tj1, j2u and j P tj3, j4u, Gs,ij “ 0 and G1
s,ij “ 0 except for the pairs pj1, j3q and

pj3, j1q. As b3 “ 0, we have Ls,j1j3 ` Ls,j2j4 ´ Ls,j2j3 ´ Ls,j1j4 “ b2pGs,j1j3 ` G1
s,j1j3

q. Thus if Ls is

zero, then b2 “ 0, and it follows that b1 “ 0.

As a result, Js, JspGs `G1
sqJs, and JsGsG

1
sJs are linearly independent if, in some school s, there are

four students from VNI
s who are not directly linked and only two of them have common friends, and

if in some school s, there are four students from VNI
s , where only two of them are linked.

We present an example of this condition by adding three nodes to Figure 1 with two additional links

(see Figure C.1). There are no links within the nodes i1, i4, i5, and i6, and only i5 and i6 have common

a friends (i7). Besides, only i5 and i7 are linked within the nodes i1, i2, i5, and i7.

i2 i4

i1 i3

i5

i6

i7

Figure C.1: Illustration of the identification
Note: Ñ means that the node on the right side is a friend of the node on the left side.

Many other situations lead to b1 “ b2 “ b3 “ 0. In practice, one can easily verify if Js, JspGs ` G1
sqJs

and JsGsG
1
sJs are linearly independent.

C.4 Asumptotic Normality in the Case of Endogenous Networks

The specification controlling for network endogeneity is:

ys,i “ κNI
s ℓNI

s,i ` κI
sp1 ´ ℓNI

s,i q ` gs,iys ` x1
s,iβ̃ ` gs,iXsγ̃ ` hs,i ` ṽs,i, (C.13)

where hs,i “ houtpµout
s,i q`hinpµin

s,iq. We replace µout
s,i and µin

s,i with their estimator and approximate the

functions hout and hin with cubic B-spline approximations. Specifically, we approximate houtpµout
s,i q

by cubic polynomials on ten different intervals covering the range of µout
s,i . The intervals are defined

so that each comprises approximately the same share of observations. We also apply this approach

to hinpµin
s,iq. Given the number of intervals and the degree of the polynomials, this approach results

in approximating hs,i by a combination of 26 variables, called bases, that are computed from the

estimates of µout
s,i and µin

s,i.
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Let 9Xs be the matrix of the new 26 bases. The approximation of hs,i is 9x1
s,iβh, where 9xs,i is the i-th

row of 9Xs and βh is a parameter to be estimate. Let R̂s “ rRs,Js
9Xss be the new design matrix. We

keep the same instrument matrix JsG
2
sXs for JsGsys. We define Ẑs “ rJsG

2
sXs, X̃s, Js

9Xss, R̂1Ẑ “

řS
s“1 R̂

1
sẐs, Ẑ1Ẑ “

řS
s“1 Ẑ

1
sẐs, and Ẑ1y “

řS
s“1 Ẑ

1
sJsys. Let Γ̂ be the estimator of the coefficients

associated with R̂s; i.e., Γ̂ “ ppR̂1ẐqpẐ1Ẑq´1pR̂1Ẑq1q´1pR̂1ẐqpẐ1Ẑq´1pẐ1yq.

The regularity assumption we need for the asymptotic normality is
řS

s“1 Ẑ
1
sphs ´ 9Xsβ̂hq{

?
n “

opp1q, where hs “ phs,1, . . . , hs,nsq1 and β̂h is the estimator of the coefficients associated with 9Xs.

A similar condition is also imposed by Johnsson and Moon (2021) (see Lipschitz condition in their

Assumption 8). It holds if the approximation error of hs,i by 9x1
sβ̂h converges at some rate to zero.

Under this condition Γ̂ is normally distributed with the asymptotic distribution
B̃´1D̃B̃´1

n
. The

matrices B̃ and D̃ are defined as the original B and D, where Rs and Zs are replaced by R̂s and Ẑs.
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