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Abstract

We study the estimation of peer effects through social networks when researchers do not

observe the entire network structure. Special cases include sampled networks, censored net-

works, and misclassified links. We assume that researchers can obtain a consistent estimator

of the distribution of the network. We show that this assumption is sufficient for estimat-

ing peer effects using a linear-in-means model. We provide an empirical application to the

study of peer effects on students’ academic achievement using the widely used Add Health

database and show that network data errors have a first-order downward bias on estimated

peer effects.
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1 Introduction

There is a large and growing literature on the impact of peer effects in social networks.1

However, since eliciting network data is expensive (Breza et al., 2020), relatively few data

sets contain comprehensive network information, and existing ones are prone to data errors.

Despite some recent contributions, existing methodologies for the estimation of peer effects

with incomplete or erroneous network data either focus on a specific kind of sampling or

error, or they are highly computationally demanding.

In this paper, we propose a unifying framework that allows for the estimation of peer

effects under the widely used linear-in-means model (e.g. Manski (1993); Bramoullé et al.

(2009)) when the researcher does not observe the entire network structure. Our methodology

is computationally attractive and sufficiently flexible to cover cases where, for example,

network data are sampled (Chandrasekhar and Lewis, 2011; Liu, 2013; Lewbel et al., 2022),

censored (Griffith, 2022), or misclassified (Hardy et al., 2024). Our central assumption is that

the researcher is able to estimate a network formation model using some partial information

about the network structure. Leveraging recent contributions on the estimation of network

formation models, we show that this assumption is sufficient to identify and estimate peer

effects.

We propose two estimators. First, we present a computationally attractive estimator

based on a simulated generalized method of moments (SGMM). The moments are built

using draws from the (estimated) network formation model. We study the finite sample

properties of our SGMM estimator via Monte Carlo simulations. We show that the estimator
1For recent reviews, see Bramoullé et al. (2020), and De Paula (2017).
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performs very well, even when a large fraction of the links are missing or misclassified.

Second, we present a flexible likelihood-based (Bayesian) estimator allowing us to exploit

the entire structure of the data-generating process. The Bayesian approach is flexible as

it allows to cover cases for which the asymptotic framework of our SGMM fails. Although

the computational cost is higher than that of the SGMM, we exploit recent computational

advances in the literature, e.g. Mele (2017); Hsieh et al. (2019), and show that the estimator

can be successfully implemented on common-sized data sets. In particular, we apply our

estimator to study peer effects on academic achievement using the widely used Add Health

database. We find that data errors have a first-order downward bias on the estimated

endogenous effect.

Our SGMM estimator is built as a bias-corrected version of the instrumental strategy pro-

posed by Bramoullé et al. (2009). Using a network formation model, we obtain a consistent

estimator of the distribution of the true network. We then use this estimated distribution

to obtain different draws from the distribution of the network. We show that our moment

conditions are asymptotically valid and that the estimator is consistent and asymptotically

normal, even with a finite number of draws from the estimated distribution of the network.

This property significantly reduces the computational cost of the method compared to meth-

ods that rely on integrating the moment conditions (e.g., Chandrasekhar and Lewis, 2011).

Importantly, our SGMM strategy requires only the (partial) observation of a single cross-

section, unlike, for example, the approach of Zhang (2024). The presence of this feature is

because of two main properties of the model. First, we can consistently estimate the dis-

tribution of the mismeasured variable (i.e., the network) using a single (partial) observation

of the variable. Second, in the absence of measurement error, valid instruments for the
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endogenous peer variable are available (Bramoullé et al., 2009).

Our Bayesian estimator is based on the likelihood function and therefore uses more infor-

mation about the structure of the model, leading to more precise estimates. In the context

of this estimator, the estimated distribution for the network acts as a prior distribution, and

the inferred network structure is updated through a Markov chain Monte Carlo (MCMC)

algorithm. Our approach relies on data augmentation (Tanner and Wong, 1987), which

treats the network as an additional set of parameters to be estimated. In particular, our

MCMC builds on recent developments from the empirical literature on network formation

(e.g., Mele, 2017; Hsieh et al., 2019). We show that the computational cost of our estimator

is reasonable and that it can easily be applied to standard data sets.

We study the impact of errors in adolescents’ friendship network data for the estima-

tion of peer effects in education (Calvó-Armengol et al., 2009). We show that the widely

used Add Health database features many missing links—around 45% of the within-school

friendship nominations are coded with error—and that these data errors strongly bias the

estimated peer effects. Specifically, we estimate a model of peer effects on students’ academic

achievement. We probabilistically reconstruct the missing links, accounting for the potential

censoring, and we obtain a consistent estimator of peer effects using both our estimators.

The bias due to data errors is qualitatively important, even assuming that the network is

exogenous. Our estimated endogenous peer effect coefficient is 1.5 times larger than that

obtained by assuming the data contains no errors.

This paper contributes to the recent literature on the estimation of peer effects when the

network is either not entirely observed or observed with noise. In particular, our framework
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is valid when network data are either sampled, censored, or misclassified.2 We unify these

strands in the literature and provide a flexible and computationally tractable framework for

estimating peer effects with incomplete or erroneous network data.

Sampled networks and censoring: Chandrasekhar and Lewis (2011) show that models

estimated using sampled networks are generally biased. They propose an analytical correc-

tion as well as a two-step general method of moment (GMM) estimator. Liu (2013) shows

that when the interaction matrix is not row-normalized, instrumental variable estimators

based on an out-degree distribution are valid, even with sampled networks. Hsieh et al.

(2024) focus on a regression model that depends on global network statistics. They propose

analytical corrections to account for nonrandom sampling of the network (see also Chen

et al., 2013). Thirkettle (2019) also focuses on global network statistics, assuming that the

researcher only observes a random sample of links. Using a structural network formation

model, he derives bounds on the identified set for both the network formation model and

the network statistic of interest. Lewbel et al. (2024b) develop a two-stage least squares

estimator for the linear-in-means model when some links are potentially misclassified. They

propose valid instruments under some restrictions on the observed and true interactions ma-

trices, or when researchers observe at least two samples of the same true network. Finally,

Zhang (2024) studies program evaluation in a context in which networks are sampled locally

and where some links might be unobserved. Assuming that the researcher has access to two

measurements of the network for each sampled unit, she presents a nonparametric estimator

of the treatment and spillover effects.
2For related literature that studies the estimation of peer effects when researchers have no network data,

see Manresa (2016); De Paula et al. (2024); Lewbel et al. (2022).
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Relatedly, Griffith (2022) explores the impact of imposing an upper bound to the number

of links when eliciting network data, e.g., “Name your five best friends.” He presents a bias-

correction method and explores the impact of censoring using two empirical applications.

He finds that censoring underestimates peer effects. Griffith and Kim (2023) present a

characterization of the analytic bias of censoring for the reduced-form parameters in the

linear-in-means and linear-in-sums models under an Expectational Equivalence assumption.

We contribute to this literature by proposing two simple and flexible estimators for the

estimation of peer effects based on a linear-in-means model. Our estimators do not require

many observations of the sampled network. Similar to Griffith (2022) and Griffith and Kim

(2023), we find—using the Add Health database—that sampling leads to an underestimation

of peer effects, although we find that censoring has a negligible impact, in the context of

peer effects, on academic achievement.

Our SGMM estimator does not suffer from the computational cost resulting from in-

tegrating the moment conditions (as in Chandrasekhar and Lewis, 2011) and can produce

precise estimates with as little as three network simulations. While our Bayesian estima-

tor is more computationally demanding, we exploit recent developments from the empirical

literature on network formation (e.g., Mele, 2017; Hsieh et al., 2019) and show that it is com-

putationally tractable. Moreover, the Bayesian estimator is valid in finite samples, which

allows in particular to cover cases not covered by the asymptotic framework on which our

SGMM relies.

Misclassification: Hardy et al. (2024) look at the estimation of (discrete) treatment

effects when the network is observed noisily. Specifically, they assume that observed links

are affected by iid errors and present an expectation maximization (EM) algorithm that
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allows for a consistent estimator of the treatment effect. Lewbel et al. (2024a) show that

when the expected number of missing links grows at a rate strictly lower than the number

of sampled individuals n, the 2SLS estimator in Bramoullé et al. (2009) is consistent.3

Our model allows for the misclassification of all links with positive probability, and we

do not impose restrictions on the rate of misclassification. As in Hardy et al. (2024), we use

a network formation model to estimate the probability of false positives and false negatives.

However, our two-stage strategy—estimating the network formation model and then the

peer effect model—allows for greater flexibility. In particular, our network formation model is

allowed to flexibly depend on covariates. This is empirically important, as networks typically

feature homophily on observed characteristics (e.g., Currarini et al., 2010; Bramoullé et al.,

2012).4

The remainder of the paper is organized as follows. In Section 2, we present the econo-

metric model as well as the main assumptions. In Section 3, we present our SGMM esti-

mator and study its performance via Monte Carlo simulations. In Section 4, we present our

likelihood-based estimation strategy. In Section 5, we present our application to peer effects

on academic achievement. Section 6 concludes the paper.
3When the growth rate is strictly smaller than

√
n, the inference is also valid.

4Formally, Hardy et al. (2024) do not require the specification of distribution of the network, but only
the distribution of the degree sequence, which is assumed not to depend on covariates.
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2 The Model

We assume that the data are partitioned into M > 1 groups, where group m contains Nm

individuals. A sample consists of the following:

{ym,Xm, εm;Am,Am}Mm=1.

For individuals in group m, ym is a vector of an observed outcome of interest (e.g., academic

achievement), Xm is an observed matrix of individual characteristics (e.g., age and gender),

and εm is a vector of unobserved individual heterogeneity.

The matrix Am is the Nm×Nm adjacency matrix of the network between individuals in

group m. We assume a directed network:5 aij,m ∈ {0, 1}, where aij,m = 1 if i is linked to

j. We normalize aii,m = 0 for all i and let ni,m =
∑
j

aij,m denote the number of links of i

within group m.

We assume that Am is not observed but that researchers observe Am instead. Informally,

the idea is that Am contains some information about the adjacency matrix Am. Our spe-

cific assumptions are presented in Section 2.2. The next assumptions formalize the above

discussion.

Assumption 1. The population is partitioned into M > 1 groups, where the size Nm of each

group m = 1, ...,M is bounded. The sequence {ym,Xm, εm;Am,Am} is independent across

m. Moreover, Xm is uniformly bounded in m.6

Assumption 2. For each group m, the variables ym, Xm and Am are observed. The vari-

ables εm and Am are not.
5All of our results hold for undirected networks.
6i.e., sup

m≥1
∥Xm∥2 < ∞, where ∥.∥2 is the Euclidean norm.
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Assumption 1 implies a “many markets” asymptotic framework, meaning that the number

of groups M goes to infinity as the number of individuals N goes to infinity. It is a standard

assumption in the literature on the econometrics of games and the literature on peer effects.7

For example, the data could consist of a collection of small villages (Banerjee et al., 2013) or

schools (Calvó-Armengol et al., 2009). Assumption 2 implies in particular that the data are

composed of group-level censuses for ym and Xm.8 A similar assumption is made by Breza

et al. (2020).

2.1 The Linear-in-Means Model

In this section, we present the linear-in-means model (Manski, 1993; Bramoullé et al., 2009),

arguably the most widely used model for studying peer effects in networks (see Bramoullé

et al., 2020, for a recent review).

Let Gm = f(Am), the Nm×Nm interaction matrix for some function f . Unless otherwise

stated, we assume that Gm is a row-normalization of the adjacency matrix Am.9 Most of

our results hold for any function f .

We focus on the following model:

ym = c1m +Xmβ + αGmym +GmXmγ + εm, (1)

where 1m is a Nm−dimensional vector of 1’s. The parameter α therefore captures the impact

of the average outcome of one’s peers on their behavior (the endogenous peer effect). The

parameter β captures the impact of one’s characteristics on their behavior (the individual
7See for example Bramoullé et al. (2020), Breza (2016), and De Paula (2017).
8Contrary to Liu et al. (2017) or Wang and Lee (2013), for example.
9In such a case, gij,m = aij,m/ni,m whenever ni,m > 0, whereas gij,m = 0 otherwise.
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effects). The parameter γ captures the impact of the average characteristics of one’s peers

on their behavior (the contextual peer effects). For simplicity, we assume that the constant c

does not vary across m. However, our results hold when considering group-level fixed effects.

We impose the following assumptions.

Assumption 3. |α| < 1/∥Gm∥ for some submultiplicative norm ∥ · ∥, and all m = 1, ...,M .

Assumption 4. Exogeneity: E[εm|Xm,Am,Am] = 0 for all m = 1, ...,M .

Assumption 3 ensures that the model is coherent and that there exists a unique vector ym

compatible with (1). When Gm is row-normalized, |α| < 1 is sufficient. Finally, Assumption

4 implies that individual characteristics and the network structure are exogenous. While the

exogeneity of the network is a strong assumption, we consider it as a benchmark and focus

on the case in which the network is not perfectly observed. We now describe the network

sampling process in more detail.

2.2 Partial Network Information

In this paper, we relax the costly assumption that the adjacency matrix Am is observed.

We assume instead that sufficient information about the network (i.e., Am) is observed so

that a network formation model can be estimated. The discussion below formalizes our

assumptions about the relationship between Am and Am. We start by describing the data-

generating process for Am.

We assume that for any group m, P (Am|Xm) = ΠijP (aij,m|Xm), where

P (aij,m|Xm) =
exp{aij,mQ(ρ0,wij,m)}
1 + exp{Q(ρ0,wij,m)}

, (2)
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and where Q is some known function that is twice continuously differentiable in ρ, and

wij,m = wij,m(Xm) is a vector of observed characteristics for the pair ij in group m.10

We focus on network formation models that are conditionally independent across links:

P (Am|Xm) = ΠijP (aij,m|Xm). This notably excludes many models of strategic network

formation such as the ones in Mele (2017) and De Paula et al. (2018). This is a strong

assumption that deserves some discussion.

As we describe below (see Assumption 5), our strategy depends on our ability to estimate

the network formation model without observing the entire network structure. In models

that allow for dependence across links (e.g., Exponential Random Graph Models, henceforth

ERGM), the feasibility of this strategy is highly context-dependent. Thus, for simplicity (and

clarity) of the analysis in the main text, we restrict our attention to network formation models

that are conditionally independent across links. We however note that our methodology can

be adapted to more general network formation models.

In Online Appendix D, we further discuss how this can be done for a few specific network

formation processes. First, we discuss the model in Graham (2017), which is conditionally

independent across links but accounts for unobserved degree heterogeneity. We show that his

model can be used, provided that the degree distribution is observed.11 Second, we discuss

ERGM. We explain how our setup can be adapted to the model in Boucher and Mourifié

(2017), in which the probability of a link is a function of the individuals’ degree. Similarly to

Graham (2017), the estimation also requires the observation of the degree distribution. We
10Throughout, P refers to the probability notation. Note that by construction, links are only defined

between individuals of the same group so the probability that individuals from different groups are linked is
zero.

11Note that the degree distribution can be obtained from survey questions by simply asking individuals
about the number of links they have.
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also discuss the estimation of more general ERGM and their implication for survey design

in the Online Appendix D.3. We now present our main assumption.

Assumption 5 (Partial Network Information). Given {Am,Xm}Mm=1 and the parametric

model (2), there exists an estimator ρ̂M , such that
√
M(ρ̂M −ρ0) →d N(0,V ρ) as M → ∞.

Assumption 5 implies that the dependence between Am and Am is strong enough so that,

using (2), the researcher can estimate the data generating process for Am. We can then use

this information in order to obtain an estimator of the conditional distribution of Am.

Definition 1. A consistent estimator of the distribution of the true network for some func-

tion κ is a probability distribution P̂ (Am|ρ̂,Xm, κ(Am)) such that sup
m

∥P̂ (Am|ρ̂,Xm, κ(Am))−

P (Am|Xm, κ(Am))∥ →p 0 as M → ∞.

Note that here, the partial information Am is used twice. First, in order to estimate ρ

(Assumption 5), and second, to construct a consistent estimator of the distribution of the

true network (Definition 1). For this second use, we allow the researcher to consider only

part of the information in Am.

Indeed, the function κ controls how much information in Am is used in order to com-

plement the information obtained by estimating the network formation process in Equation

2. Two important polar cases are the identity function κ(Am) = Am implying that all the

information in A is used, and the constant function κ(Am) = κ0 for all Am in which no

information on A is used. Although our methodology is valid for any κ, the choice of κ may

strongly affect the identification and precision of our estimators.

When κ is the identify function, the estimator is obtained from Bayes’ rule:

P̂ (Am|ρ̂,Xm,Am) =
P (Am|Xm,Am)P (Am|ρ̂,Xm)

P (Am|Xm)
. (3)
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However, in some contexts, such a quantity may be hard to compute, depending on the nature

of the information in Am. A solution, therefore, could be to disregard the information in A

and use:

P̂ (aij,m|ρ̂,Xm) =
exp{aij,mQ(ρ̂,wij,m)}
1 + exp{Q(ρ̂,wij,m)}

.

In that case, the precision of the estimator strongly depends on the network formation

process in (2). Thus, the loss in precision is context-dependent. In particular, it depends on

the heterogeneity in the probability of link formation implied by (2), and on the specificity

about Am that is contained in Am.

We specifically discuss three leading examples in which Assumption 5 holds and focus on

how P̂ (Am|ρ̂,Xm, κ(Am)) is constructed: sampled networks (Example 1), censored networks

(Example 2), and misclassified network links (Example 3).

However, as discussed, the many-markets asymptotic framework (see Assumption 1) is

restrictive and does not hold in some contexts such as when researchers have access to

aggregated relational data (see the Online Appendix H). In Section 4, we present a Bayesian

estimator which uses the same structure as the one presented here but is valid in finite

samples.

Example 1 (Sampled Networks). Suppose that we observe the realizations of aij for a ran-

dom sample of m pairs (e.g., Chandrasekhar and Lewis, 2011). Here Am is simply a list

of sampled pairs: Am = {aij,m}ij is sampled (see e.g., Conley and Udry, 2010, for concrete

example). Consider the following simple network formation model:

P (aij,m = 1|Xm) =
exp{wij,mρ}

1 + exp{wij,mρ}
.
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In this case, a simple logistic regression on the subset of sampled pairs provides a consistent

estimator of ρ since pairs of individuals for which aij,m is observed is random.

In this simple framework, the linking status of sampled pairs of individuals is known. As

such it is natural to define κ as the identity map, which leads to the estimator

P̂ (aij,m|ρ̂,Xm,Am) = aij,m for all sampled pairs ij, and P̂ (aij,m|ρ̂,Xm,Am) = exp{wij,mρ̂}/

(1 + exp{wij,mρ̂}) otherwise. In essence, sampled pairs are used to estimate the network

formation model, which is then used in order to predict the probability of a link for pairs that

are not sampled.

Example 2 (Censored Network Data). As discussed in Griffith (2022), network data is often

censored. This typically arises when surveyed individuals are asked to name only T > 1 links

(among the Nm possible links they may have). Here, Am can be represented by an Nm×Nm

binary matrix Aobs
m which takes value aij,m = 1 if i nominated j, and 0 otherwise. Consider

the same simple model as in Example 1:

P (aij,m = 1|Xm) =
exp{wij,mρ}

1 + exp{wij,mρ}
.

In Section 5 and the Online Appendix G.2, we present how to estimate ρ in detail. Here,

we discuss how to obtain the estimator P̂ (Am|ρ̂,Xm, κ(Am)) given ρ̂. Note that P̂ (aij,m =

1|ρ̂,Xm, a
obs
ij,m = 1) = 1 because observed links necessarily exist. Second, note also that for

any individual i, such that ni,m < T , we have P̂ (aij,m|ρ̂,Xm, a
obs
ij,m) = aobsij for all j, as their

network data are not censored.

Thus, the structural model is only used to obtain the probability of links that are not

observed for individuals whose links are potentially censored, i.e., P̂ (aij,m = 1|ρ̂,Xm, a
obs
ij,m =

0) = exp{wij,mρ̂}/(1 + exp{wij,mρ̂}) for all ij, such that ni ≥ T .
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Example 3 (Misclassification). Hardy et al. (2024) study cases in which networks are ob-

served but may include misclassified links (i.e., false positives and false negatives). Here, Am

can be represented by an Nm ×Nm binary matrix Amis
m . Consider the same simple model as

in Example 1 and 2:

P (aij,m = 1|Xm) =
exp{wij,mρ}

1 + exp{wij,mρ}
.

The (consistent) estimation ρ in such a context follows directly from the existing literature

on misclassification in binary outcome models, e.g., Hausman et al. (1998). In this context,

the simplicity of the sampling scheme allows to consider the identity map κ(Am) = Am. The

estimator for the distribution of the true network can be obtained using Bayes’ rule. We

consider this case in our Monte Carlo simulations in Section 3.1.

3 Simulated Generalized Method of Moment Estimators

In this section, we present an estimator based on a Simulated Generalized Method of Mo-

ments (SGMM). Our SGMM is constructed as a de-biased simulated version of the widely

used linear GMM in Bramoullé et al. (2009).

Before presenting the estimator, we start with an informal discussion of how the moment

function is built. A formal treatment is presented in Appendix A. Recall first the linear-in-

means model presented in the previous section:

ym = Vmθ̃ + αGmym + εm,

where we defined Vm = [1m,Xm,GmXm], and θ̃ = [c,β′,γ ′]′. A valid set of instru-

ments for the endogenous variable Gmym is: Zm = [1m,Xm,GmXm,G
2
mXm,G

3
mXm, ...].
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(Bramoullé et al., 2009) This defines the following moment function: m(θ) = Z′
mεm, where

θ = [α, c,β′,γ ′]′, and one can easily show that E[m(θ)|Am,Xm] = 0 for θ = θ0 and that θ0

is identified under the usual rank condition.12

Unfortunately, this approach is not feasible when Gm = f(Am) is not observed. As

discussed, our strategy is to develop a simulated version of this simple linear GMM estimator.

Indeed, equipped with a consistent estimator of the distribution of Am (see Definition 1),

we can draw network structures from that same distribution.

To simplify the notation, we denote Ġm = f(Ȧm), G̈m = f(Äm), and
...
Gm = f(

...
Am) as

independent draws from the distribution P̂ (Am|ρ̂,Xm, κ(Am)). We will also note Żm and

V̇m, the versions of Zm and Vm in which Gm is replaced with Ġm (and similarly for G̈m

and
...
Gm).

Now, suppose that we replace the unobserved Gm with Ġm everywhere in the expression

Z′
mεm. This would lead to a moment function with an expectation given by:

E(ṁ(θ)|Am,Am,Xm) = E(Ż′
m[(Im − αĠm)ym − V̇θ̃]|Am,Am,Xm)

= E(Ż′
mε̇|Am,Am,Xm),

where Im is the identity matrix of dimension Nm. The expectation of the moment function

does not generally equal 0 when θ = θ0, even asymptotically.13

There are two issues with the previous moment function. First, the instruments and the

explanatory variables are generated using the same network draw Ġm, which introduces a

correlation between the Żm and ε̇, conditionally on Am, Am, and Xm. This can easily be
12As standard, we use the subscript 0 to denote the true value of the parameter. See e.g., Bramoullé et al.

(2009) and Lee et al. (2010) for identification results when Gm is observed.
13Recall from Definition 1 that Ġm is drawn from the same distribution as Gm only as M → ∞.
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resolved by simply using different draws to construct the instruments and the explanatory

variables. This leads to:

E (m̈(θ)|Am,Am,Xm) = E(Ż′
mε̈|Am,Am,Xm)

= E(Ż′
m|Am,Am,Xm)E(ε̈|Am,Am,Xm),

where ε̈m = (Im − αG̈m)ym − V̈θ̃. However, in general, E(ε̈|Am,Am,Xm) ̸= 0 at θ = θ0.

To see why, note that we can rewrite:

ε̈m = (Im − αG̈m)(Im − α0Gm)
−1[Vmθ̃0 + εm]− V̈mθ̃.

While we can show that E(Im − αG̈m)(Im − α0Gm)
−1ε|Am,Am,Xm) = 0 from the law of

iterated expectations and Assumption 4, we have:

E[(Im − αG̈m)(Im − α0Gm)
−1Vmθ̃0|Am,Am,Xm]− E[V̈mθ̃|Am,Am,Xm] ̸= 0,

when θ = θ0, even asymptotically. This is due to the approximation error in using G̈m

instead of Gm. This approximation error does not vanish asymptotically. In particular,

because groups have bounded, the product (Im − α0G̈m)(Im − α0Gm)
−1 does not converge

to the identity matrix. If it did, consistency would follow.

Our SGMM presented below offers a bias-corrected version of this estimator. Specifically,

consider the following (feasible) approximation of the bias of E(ε̈|Am,Am,Xm):

δm = (Im − αG̈m)(Im − α
...
Gm)

−1
...
Vmθ̃ − V̈θ̃.

We obtain ε̈m − δm = (Im − αG̈m)ym − (Im − αG̈m)(Im − α
...
Gm)

−1
...
Vmθ̃, and we can show

that E(ε̈m − δm|Am,Am,Xm) = 0 for θ = θ0 as M → ∞.14

14In the bias approximation expression, we use a third independent draw,
...
Gm, as an approximation of

Gm to ensure that it remains independent of Ġm and G̈m, just as Gm is.
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The above discussion thus leads to the definition of our SGMM. Let {Ġ(r)
m }Rr=1, {G̈(s)

m }Ss=1,

and {
...
G

(t)

m }Tt=1 be sequences of independent draws from estimator of the network formation

process (see Definition 1), we have the following.

Theorem 1 (SGMM). Suppose that Assumptions 1–5 and regularity conditions 6–10 and 12

hold (see Appendix A). Suppose also that the identification condition 11 holds (see Appendix

A). Let Ż(r)
m = [1m,Xm, Ġ

(r)
m Xm, (Ġ

(r)
m )2Xm, (Ġ

(r)
m )3Xm, ...] and

...
V

(t)

m = [1m,Xm,
...
G

(t)

mXm].

Consider also the following (simulated) moment function:

m̄M(θ) =
1

M

∑
m

1

RST

∑
rst

Ż(r)′
m

[
(Im − αG̈(s)

m )
(
ym − (Im − α

...
G

(t)

m )−1
...
V

(t)

m θ̃
)]

(4)

Then, for any positive integers R, S, and T , the (simulated) GMM estimator based on

(4) is consistent and asymptotically normally distributed.

The identification condition is standard and ensures that the moment condition is uniquely

solved at θ0. We discuss it in more detail below.

Theorem 1 presents conditions for the consistency and asymptotic normality of our two-

step estimator. In particular, similar to a standard simulated GMM (Gourieroux et al.,

1996), consistency holds for a finite number of simulations. Our estimator therefore does not

suffer from the curse of dimensionality faced by Chandrasekhar and Lewis (2011).15

Here, a few remarks regarding the consistency and asymptotic normality are in order.

Note that the simulated moment function is based on network draws that depend on an es-

timated distribution. In particular, we have: Ġm = Ġm(ρ̂) = f({ȧm,ij}ij) = f({1[P̂ (ȧm,ij =

1|ρ̂;Xm, κ(Am)) ≥ u̇m,ij]}ij), where u̇m,ij ∼iid U [0, 1] and independent of εm (and similarly

for G̈m and
...
Gm), and 1 is the indicator function.

15The unconditional moment condition in Chandrasekhar and Lewis (2011) is based on the (Monte Carlo)
integration of the moment condition E(Z(s)′

m εm|Gm) over Gm.

17



This has two implications. First, it implies that our SGMM estimator is a two-stage

estimator and therefore that the asymptotic variance-covariance matrix for θ has to account

for the first-stage sampling uncertainty. We show how to estimate the resulting asymptotic

variance-covariance in the Online Appendix B.2.

Second, the indicator function 1[P̂ (ȧm,ij = 1|ρ;Xm, κ(Am)) ≥ u̇m,ij] implies that the

objective function of the two-stage estimator is not everywhere continuous in ρ. While

this has a limited impact on consistency, it does complicate the proof of the asymptotic

normality. Our proof builds on the argument in Andrews (1994), and we show that the

stochastic equicontinuity condition holds using a bracketing argument.

Consistency and asymptotic normality also obviously depend on an identification condi-

tion. Here, the fact that the approximation of the bias δm is non-linear in α implies that our

SGMM is non-linear and that the identification condition cannot be simplified to a simple

rank condition.

In Appendix B.1, we show that the objective function of our SGMM can be concentrated

around α and that conditional on α, the identification conditions for θ̃ reduces to an asymp-

totic rank condition. Specifically, a sufficient condition for the identification of θ̃, conditional

on α, is that the expected value of:

1

RST

∑
rst

Ż(r)′
m (Im − αG̈(s)

m )(Im − α
...
G

(t)

m )−1
...
V

(t)

m

converges in probability, to a full rank matrix for all α.16 The last expression makes it clear

that the non-linearity in our SGMM is sourced in the approximation of the asymptotic bias

δm = (Im − αG̈m)(Im − α
...
Gm)

−1
...
Vmθ̃ − V̈mθ̃.

16The identification of α then requires that the concentrated objective function is uniquely minimized.
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When the matrix Gm is observed, we have Ġ(r)
m = G̈(s)

m =
...
G

(t)

m = Gm and the expression

reduces to Z′
mVm, (Bramoullé et al., 2009) which does not depend on α. This shows that

the quality of P̂ (Am|ρ̂,Xm, κ(Am)) has strong implications for identification since the de-

pendence on α is weaker when the correlation between network draws is strong. We study

the finite sample properties of our estimator using Monte Carlo simulation in Section 3.1.17

3.1 Monte Carlo Simulations

In this subsection, we study the performance of our SGMM estimator using Monte Carlo

simulations. We consider cases where links are missing at random (see Example 1) and

misclassified at random (see Example 3). The simulated individual characteristics (i.e.,

the matrix X) include two characteristics similar to "age" and "female" in our empirical

application.18 The network formation process follows a logistic regression model:

P (aij = 1|X) =
exp{ρ1 + ρ2|xi1 − xj1|+ ρ31{xi2 = xj2}}

1 + exp{ρ1 + ρ2|xi1 − xj1|+ ρ31{xi2 = xj2}}
,

where xi1 represents "age" and xi2 represents "female".19

We analyze different proportions of randomly missing and misclassified entries in the

network matrix. Figure 1 presents estimates for the endogenous peer effect coefficient α

using our SGMM estimator. The left panel shows the peer effect estimates for the case of
17Theorem 1 assumes that the partial observability of Am implies that GmXm and Gmym are both un-

observed. However, in some cases, researchers can separately observe these quantities from survey questions.
For example, one could simply obtain Gmym from a question of the type: “What is the average value of
your friends’ y?” In these cases, it is possible to improve on our SGMM estimator by using this additional
information. The resulting estimators are presented in Corollary 1 and Corollary 2 of the Online Appendix
C.

18See Section 5. We simulate those variables from their empirical distributions in our sample. Parameter
values are set to the estimates from our application: (α,β,γ) = (0.538, 3.806,−0.072, 0.132, 0.086,−0.003).
We assume that ε is iid normally distributed with standard deviation of σ = 0.707.

19The parameter vector ρ is also set to its empirically estimated values: ρ = (−2.349,−0.700, 0.404).

19



missing links, while the right panel displays the estimates for the case of misclassified links.20

Additionally, we report estimates obtained using the standard IV estimator of Bramoullé

et al. (2009), treating the observed network with missing values or misclassified links as the

true network.

α0 = 0.538 α0 = 0.538
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Classical IV: Gy, GX unobserved SGMM: Gy, GX unobserved

Figure 1: Estimated peer effects under missing links

Note: Dots represent the average estimated values of α, and bars indicate 95% confidence intervals. Tables
E.1–E.4 in Online Appendix E provide the full set of estimated coefficients. The "Classical IV" refers
to the standard estimator of Bramoullé et al. (2009). We simulate data for 100 groups of 30 individuals
each. We assume that εi follows a normal distribution. We estimate ρ using a logit model based on the
observed network entries (left panel) and a logit model with misclassification (right panel). The resulting
estimates allow us to construct the network distribution (see Definition 1) and subsequently compute our
SGMM estimator.

For the case of missing links, the estimates are centered around the true value. Although

precision decreases as the fraction of missing links increases, our SGMM estimator maintains

a reasonable level of accuracy, even when half of the links are missing. In contrast, the

standard IV estimator significantly underestimates the peer effect coefficient α.

For the case of misclassified links, the estimator performs well when there are false nega-
20Tables E.1–E.4 in Online Appendix E provide the full set of estimated coefficients, including results that

control for unobserved group heterogeneity through fixed effects.
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tives only. Precision is affected when there are false positives, although the estimates remain

centered around the true value. With false positives, the estimator for ρ loses precision since

the network is simulated to match the one in our application: the density of the network is

low.21 With few links, the finite sample cost of false positives is thus more important.

4 Bayesian Estimator

In this section, we present a likelihood-based estimator. Accordingly, greater structure must

be imposed on the errors εm. Specifically, given parametric assumptions for εm, one can

write the log-likelihood of the outcome as:

lnP(y|A,X,θ) =
∑
m

lnP(ym|Am,Xm;θ), (5)

where notation without the index m denotes vectors and matrices at the sample level. We

abuse notation by letting θ = [α,β′,γ ′,σ′]′, which now includes σ, additional unknown

parameters of the distribution of εm. Recall that from Equation (1), we have: ym = (Im −

αGm)
−1(c1m +Xmβ +GmXmγ + εm) since (Im − αGm)

−1 exists under our Assumption 3.

If the adjacency matrix Am is observed, then θ could be estimated using a simple maxi-

mum likelihood estimator (as in Lee et al., 2010) or using Bayesian inference (as in Goldsmith-

Pinkham and Imbens, 2013). See in particular the identification conditions presented in Lee

(2004) and Lee et al. (2010). Since Am is not observed, but that Am is observed, we focus

on the following alternative likelihood:

lnP(y|A,X;θ,ρ) =
∑
m

ln
∑
Am

P(ym|Am,θ)P (Am|ρ,Xm,Am).

21This is typical of most network data: two randomly selected individuals are unlikely to be linked, even
conditional on observables.
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That is, we integrate the likelihood using posterior distribution obtained from the network

formation model in Equation (2) after observing Am.22

One particular issue with estimating lnP(y|A,X;θ,ρ) is that the summations over the

set of all possible network structures Am, for each group m is not tractable. Indeed, for

a group of size Nm, the sum is over the set of possible adjacency matrices, which contain

2Nm(Nm−1) elements. Then, simply simulating networks from P (Am|ρ,Xm,Am) and taking

the average likely lead to poor approximations. A classical way to address this issue is to

use an EM algorithm (Hardy et al., 2024). Although valid, we found that the Bayesian

estimator proposed in this section is less restrictive and numerically outperforms its classical

counterpart. The Bayesian treatment also has the advantage of being valid in finite sam-

ples, allowing for a richer set of network formation models and partially observed network

information A.23

For concreteness, we will assume that εm ∼ N (0, σ2Im) for all m; however, it should be

noted that our approach is valid for several alternative assumptions as long as it yields a

computationally tractable likelihood. For each group m, and recalling that Gm = f(Am),

we have:

lnP(ym|Am,θ) = −Nm ln(σ) + ln |Im − αGm| −
Nm

2
ln(π)

− 1

2σ2
[(Im − αGm)ym − c1m −Xmβ −GmXmγ]

′ ·

[(Im − αGm)ym − c1m −Xmβ −GmXmγ].

Because Am is not observed, we follow Tanner and Wong (1987), and we use data augmenta-
22See Equation (3). Note also that, conceptually, we could condition on κ(A) instead of A as in Section

3. However, this is much less attractive from a Bayesian perspective and thus limit ourselves to this (more
efficient) case.

23For example, models estimated using Aggregated Relational Data, see the Online Appendix H.
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tion to evaluate the posterior distribution of θ. That is, instead of focusing on the posterior

distribution of θ (i.e., P (θ|y,A,X)) in the case in which the network was observed, we focus

instead on the posterior distribution P (θ,A|y,A,X), treating A as another set of unknown

parameters.

Since the number of parameters to be estimated is larger than the number of observa-

tions,24 the identification of the model rests on the a priori information on A. A sensible

prior for A is the consistent estimator of its distribution, i.e., ΠmP̂ (Am|ρ̂,Xm,Am). Let

π(ρ|X,A) be the prior density on ρ. How to obtain π(ρ|X,A), depending on whether ρ̂

is obtained using a Bayesian or classical setting, is discussed in Examples 4 and 5 of the

Online Appendix F.3. Given π(ρ|X,A), it is possible to obtain draws from the posterior

distribution P (θ,A,ρ|y,A) using the following Metropolis-Hastings MCMC:25

Algorithm 1. The MCMC goes as follows for t = 1, ..., T , starting from any A0,θ0, and

ρ0.

1. Draw ρ∗ from the proposal distribution qρ(ρ
∗|ρt−1) and accept ρ∗ with probability

min

{
1,

P (At−1|ρ∗,A)qρ(ρt−1|ρ∗)π(ρ∗|A)

P (At−1|ρt−1,A)qρ(ρ∗|ρt−1)π(ρt−1|A)

}
.

2. Propose A∗ from the proposal distribution qA(A
∗|At−1) and accept A∗ with probability

min

{
1,

P(y|θt−1,A
∗)qA(At−1|A∗)P (A∗|ρt−1,A)

P(y|θt−1,At−1)qA(A∗|At−1)P (At−1|ρt−1,A)

}
.

24Each group contains Nm observations while the dimension of Am is Nm(Nm − 1).
25As customary, for the rest of this section, we omit the dependence on X to lighten the notation. The

notation with the index t−1 in this section refers to the (t−1)-th iteration of the MCMC, not the (t−1)-th
group. Specifically, At−1 denotes the adjacency matrix at the sample level in iteration t−1. Since the MCMC
is a Metropolis-Hastings, the detailed balance and ergodicity conditions hold so the MCMC converges to
P (θ,A,ρ|y,A). See Cameron and Trivedi (2005), Section 13.5.4 for more details.
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3. Draw α∗ from the proposal qα(·|αt−1) and accept α∗ with probability

min

{
1,

P(y|At;βt−1,γt−1, α
∗)qα(αt−1|α∗)π(α∗)

P(y|At;θt−1)qα(α∗|αt−1)π(αt−1)

}
.

4. Draw [β, γ, σ] from their posterior conditional distributions (see Online Appendix F).

Step 1 allows to refine the estimation of ρ. Indeed, in the first stage, ρ is inferred using

the information provided by A. In Step 1, however, ρ is updated conditional on A and

At−1. This provides additional information not available in the first stage since At−1 uses

information provided by the likelihood function (5).

Steps 3 and 4 are standard and detailed distributions can be found in the Online Appendix

F. Step 2, however, requires some discussion. Indeed, the idea is the following: given the prior

information P (A|ρt−1,A), one must be able to draw samples from the posterior distribution

of A, given y. This is not a trivial task.

In particular, there is no general rule for selecting the network proposal distribution

qA(·|·). A natural candidate is a Gibbs sampling algorithm for each link, i.e., change only

one link ij at every step t and propose aij according to its marginal distribution, i.e., aij ∼

P (·|A−ij,y,A), where A−ij = {akl; k ̸= i, l ̸= j}. In this case, the proposal is always

accepted.

However, it has been argued that Gibbs sampling could lead to slow convergence (e.g.,

Snijders, 2002; Chatterjee et al., 2013), especially when the network is sparse or exhibits a

high level of clustering. For example, Mele (2017) and Bhamidi et al. (2008) propose different

blocking techniques meant to improve convergence.

Here, however, achieving Step 2 involves an additional computational issue because eval-

uating the likelihood ratio in Step 1 requires comparing the determinants |I − αf(A∗)| for
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each proposed A∗, which is computationally intensive.

Then, the appropriate blocking technique depends strongly on P (A|ρt−1,A) and the

assumed distribution for ε. For the simulations and estimations presented in this paper, we

use the Gibbs sampling algorithm for each link, adapting the strategy proposed by Hsieh

et al. (2019) to our setting (see Proposition 3 in the Online Appendix F.2). This can be

viewed as a worst-case scenario. Nonetheless, the Gibbs sampler performs reasonably well in

practice however, we encourage researchers to try other updating schemes if Gibbs sampling

performs poorly in their specific contexts. In particular, we present a blocking technique in

the Online Appendix F that is also implemented in our R package PartialNetwork.26

Finally, note that for simple network formation models, it is possible to jointly estimate

ρ and θ within the same MCMC instead of using the two-step procedure described above.

In this case, Step 1 can simply be replaced by:

1’. Draw ρ∗ from the proposal distribution qρ(ρ∗|ρt−1) and accept ρ∗ with probability

min

{
1,

P (At−1|ρ∗,A)P (A|ρ∗)qρ(ρt−1|ρ∗)π(ρ∗)

P (At−1|ρt−1,A)P (A|ρt−1)qρ(ρ
∗|ρt−1)π(ρt−1)

}
.

Here, P (A|ρ∗) is the likelihood of the network information A assuming the network formation

model in (2). Note that π(ρ), the prior density on ρ, no longer depends on A and can be

chosen arbitrarily (e.g., uniform).
26The complexity of Step 2 is not limited to our Bayesian approach. Classical estimators, such as GMM

estimators, face a similar challenge in requiring the integration over the entire set of networks. The strategy
used here is to rely on a Metropolis-Hastings algorithm, a strategy that has also been successfully imple-
mented in the related literature on ERGMs (e.g., Snijders, 2002; Mele, 2017, 2020; Badev, 2021; Hsieh et al.,
2019).

25



5 Application

In this section, we assume that the econometrician has access to network data but that the

data may contain errors due to both sampling (links coded with errors) and censoring. To

show how our method can be used to address these issues, we consider a simple example

where we are interested in estimating peer effects on adolescents’ academic achievements.

We use the widely used AddHealth database and show that network data errors have a

first-order impact on the estimated peer effects. Specifically, we focus on a subset of schools

from the Wave I “In School” sample that have less than 200 students (33 schools). Table G.1

in the Online Appendix G.3 presents the summary statistics.

Most papers estimating peer effects that use this particular database have taken the

network structure as given. One notable exception is Griffith (2022), looking at censoring:

students can only report up to five male and five female friends. We also allow for censoring

but show that censoring is not the most important issue with the Add Health data. To

understand why, we discuss the organization of the data.

Each adolescent is assigned a unique identifier. The data includes ten variables for the

ten potential friendships (maximum of five male and five female friends). These variables

can contain missing values (no friendship was reported), an error code (the named friend

could not be found in the database), or an identifier for the reported friends. These data are

then used to generate the network’s adjacency matrix A.

Of course, error codes cannot be matched to any particular adolescent. Moreover, even in

the case where the friendship variable refers to a valid identifier, the referred adolescent may

still be absent from the database. A prime example is when the referred adolescent has been
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removed from the database by the researcher, perhaps because of other missing variables

for these particular individuals. These missing links are quantitatively important as they

account for roughly 45% of the total number of links (7,830 missing for 10,163 observed

links). Figure 2 displays the distribution of the number of “unmatched named friends.”27
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Figure 2: Frequencies of the number of missing links per adolescent

To use the methodology developed in sections 3 and 4, we first need to estimate a network

formation model using the observed network data. In this section, we assume that links are

generated using a simple logistic framework, i.e.,

P (aij,m = 1) =
exp{wij,mρ}

1 + exp{wij,mρ}
,

where wij,m is built to capture homophily on the observed characteristics of i and j (see

Tables G.2 and G.3 in the Online Appendix G.3).

We estimate the network formation model on the set of individuals for which we observe

no “unmatched friends.” For these students, we know for sure that their friendship data are

complete. However, even under a missing at-random assumption, the estimation of ρ on
27We focus on within-school friendships; thus, nominations outside of school are not treated as “unmatched

friends.” Note also that these data errors could be viewed as a special case of censoring (Griffith, 2022) in
which researchers know exactly how many links are censored. The attenuation bias is thus expected.
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this subsample is affected by a selection bias: individuals with more friends have a higher

probability of being censored, or of having a friendship nomination coded with error.28

We control for this selection bias by weighting the log-likelihood of the network following

Manski and Lerman (1977). The details are presented in the Online Appendix G.1 and

Online Appendix G.2. Intuitively, individuals in our restricted sample have fewer links.

Therefore, the likelihood of ai,j when i is selected in our restricted sample is weighted by the

inverse selection probability. When accounting for missing data due to error codes only, we

estimate the selection probability for an individual i who declares ni friends as the proportion

of individuals without missing network data who declare ni friends.

We use the same approach when controlling for missing data due to both error codes

and censoring. However, in this case, the individual’s censored number of friends has to

be replaced with the (unobserved) true number of friends. We estimate individuals’ true

number of friends using a censored Poisson regression, where the observed number of friends

in the network is used as the censored dependent variable: the variable is censored when

individual i nominates five male friends or five female friends.

We present the estimation results for the SGMM and Bayesian estimator. Figure 3

summarizes the results for the endogenous peer effect coefficient α, whereas the full set of

results is presented in the Online Appendix G.3. The first two estimations (Obsv.Bayes and

Obsv.SGMM ) assume that the observed network is the true network for both estimators.

The third and fourth estimations (Miss.Bayes and Miss.SGMM ) account for missing data

due to error codes but not for censoring. The last two estimations (TopMiss.Bayes and
28Note that this is different from the random sampling discussed in our Example 1 and closer to the

misclassification in Example 3, with only false-negative type of errors.
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TopMiss.SGMM ) account for missing data due to error codes and censoring.

TopMiss.SGMM

TopMiss.Bayes

Miss.SGMM

Miss.Bayes

Obsv.SGMM

Obsv.Bayes

0.0 0.4 0.8 1.2
Peer effect estimate
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Figure 3: Peer effect estimate

Note: Dots represent estimated values (and posterior mean) of α, and bars represent 95%
confidence intervals (and 95% credibility intervals). Tables G.2 and G.3 in Online Appendix
G.3 present the full set of estimated coefficients.

We first see that the SGMM estimator is less efficient than the Bayesian estimator. This

should not be surprising since the Bayesian estimator uses more structure (in particularity

homoscedastic, normally distributed errors). When we compare the estimations Obsv.SGMM

and Miss.SGMM, the observed differences imply that the efficiency loss is because of the

relative inefficiency of the GMM approach, and not of the missing links or specifically of our

SGMM estimator.29

Importantly, we see that the bias due to the assumption that the network is fully observed

is quantitatively and qualitatively important. Using either estimator, the estimated endoge-

nous peer effect using the reconstructed network is 1.5 times larger than that estimated

assuming the observed network is the true network.30 Almost all of the bias is produced by

the presence of error codes and not because of potential censoring.
29Recall that when the network is observed, our SGMM uses the same moment conditions as, for example,

those suggested by Bramoullé et al. (2009).
30The difference is “statistically significant” for the Bayesian estimator.

29



This exercise shows that data errors are a first-order concern when using the Add Health

database. Not only does the bias in the endogenous peer effect coefficient α have an impact

on the social multiplier (Glaeser et al., 2003), but it can also affect the anticipated effect of

targeted interventions, i.e., the identity of the key player (Ballester et al., 2006). We include

a more detailed discussion in Appendix G.4.

However, we would like to stress that we do not argue that our estimated coefficients

are causal, because the friendship network is likely endogenous (e.g., Goldsmith-Pinkham

and Imbens, 2013; Hsieh and Van Kippersluis, 2018; Hsieh et al., 2020). While previous

literature has focused on the impact of network endogeneity, it has done so by assuming that

the network is fully observed, despite the fact that roughly 45% of the links are missing.

Above, we showed that errors in the observed network have a first-order impact on the

estimated peer effect, even when one assumes that the network is exogenous.

6 Conclusion

In this paper, we propose two estimators for which peer effects can be estimated without

observing the entire network structure. We find, perhaps surprisingly, that even very partial

information on network structure is sufficient. By specifying a network formation model,

researchers can probabilistically reconstruct the true network and base the estimation of peer

effects on this reconstructed network. Importantly, we provide computationally tractable and

flexible estimators to do so, all of which are available in our R package PartialNetwork.

We apply our methodology to the widely used Add Health data and find that missing links

due to noise in the data have first-order effects on the estimated peer effect coefficient.
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A Appendix: Proof of Theorem 1

For the sake of clarity, we often write objects that depend on simulated networks as func-

tions of ρ; e.g., we write Żm(ρ) and Ġm(ρ) instead of Żm and Ġm, unless this precision is

unnecessary for the exposition. We define:

mm,rst(θ,ρ) = Ż
(r)′
m (ρ)(I− αG̈

(s)
m (ρ))

(
ym − (Im − α

...
G

(t)

m (ρ))−1
...
V

(t)

m (ρ)θ̃
)
.

Let also mm(θ,ρ) =
1

RST

∑
rst

mm,rst(θ,ρ) and m̄M(θ,ρ) =
1

M

∑
m

mm(θ,ρ). The objective

function of the SGMM is given by:

QM(θ) = [m̄M(θ, ρ̂)]′WM [m̄M(θ, ρ̂)],

where WM is a weighing matrix. The SGMM estimator is θ̂ = argmaxθ QM(θ).

We impose the following regularity assumptions.

Assumption 6. ρ0 and θ0 are interior points of Θ and R, respectively, where both Θ and

R are compact subsets of the Euclidean space.

Assumption 7. (i) For all m = 1, ...,M , r = 1, ..., R, s = 1, ..., S, and t = 1, ..., T ,

(Im − αGm) and (Im − α
...
G

(t)

m ) are non-singular. (ii) The (i, j)-th entries of Gm (so Ġ(r)
m ,

G̈(s)
m , and

...
G

(t)

m ), (Im − αGm)
−1, and (Im − α

...
G

(t)

m )−1 are bounded uniformly in i, j, and m.

In particular, when Gm is row-normalized (so Ġ(r)
m , G̈(s)

m , and
...
G

(t)
are also row-normalized),

Assumption 3 implies Assumption 7.

Assumption 8. sup
m≥1

E{∥εm∥µ2 |Xm,Am} exists and is bounded, for some µ > 2, where ∥.∥2

is the Euclidean norm.

Assumption 9. The derivative of P̂ (aij,m|ρ,Xm, κ(Am)) with respect to ρ is bounded uni-

formly in i, j, and m.
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Assumption 10. WM is positive definite and plimWM = W0, where plim denotes the

probability limit as M goes to infinity and W0 is a non-stochastic and positive definite matrix.

Assumption 11 (Identification). For any θ ̸= θ0, limE(m̄M(θ,ρ0)) ̸= 0, where lim denotes

the standard limit as M goes to infinity.

While assumptions 6–10 are quite weak and standard, Assumption 11 is more substantial

in nature. We discuss identification in more detail in Section B.1.

The proof of Theorem 1 proceeds as follows. In Section A.1, we show that the estimator

is consistent. In Section A.2, we show that the estimator is asymptotically normal.

A.1 Proof of the consistency of the SGMM

We proceed to show that Theorem 2.1 in Newey and McFadden (1994) applies to our SGMM

estimator. The proof relies on the following Lemmatta.

Lemma 1 (Validity of the moment function). The moment condition is verified for (θ0,ρ0);

that is, E(mm(θ0,ρ0)) = 0 for all m.

Proof. Let us substitute ym = (Im − α0Gm)
−1(Vmθ̃0 + εm) in the moment function. We

have

mm,rst(θ0,ρ0) = Ż(r)′
m (ρ0)(Im − α0G̈

(s)
m (ρ0))

[
(Im − α0Gm)

−1Vm

−(Im − α0

...
G

(t)

m (ρ0))
−1

...
V

(t)

m (ρ0)
]
θ̃0

+ Ż
(r)′
m (ρ0)(Im − α0G̈

(s)
m (ρ0))(Im − α0Gm)

−1ε.

(6)

Consider the last part first. We have, for any r and s:

E
(
Ż

(r)′
m (ρ0)(Im − α0G̈

(s)
m (ρ0))(Im − α0Gm)

−1εm|Xm, κ(Am)
)
= 0,
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from Assumption 4.

Consider now the first part. Since network draws are independent, we have:

Êm[Ż(r)′
m (ρ0)]Êm[(Im − α0G̈

(s)
m (ρ0))]

(
E(0)
m [(Im − α0Gm)

−1Vm]−

Êm[(Im − α0

...
G

(t)

m (ρ0))
−1

...
V

(t)

m (ρ0)]
)
θ̃0,

where Êm denotes the expectation with respect to the distribution of the simulated networks,

conditional on Xm, κ(Am), and where E(0)
m is the expectation with respect to the distribution

of the true network Gm, conditional on Xm, κ(Am). Since, at ρ0, these are the same distribu-

tions, the terms in the big parenthesis cancel out, and thus, E[mm,rst(θ0,ρ0)|Xm, κ(Am)] = 0.

As a result, E[mm(θ0,ρ0)] =
1

RST

∑
rst

E[mm,rst(θ0,ρ0)] = 0 by the law of iterated expecta-

tions.

Lemma 2 (Differentiability). E[mm(θ,ρ)] is continuously differentiable in (θ,ρ).

Proof. See the Online Appendix B.

Lemma 3 (Uniform convergence). We establish the following results.

(a) E[m̄M(θ, ρ̂)]− E[m̄M(θ,ρ0)] converges uniformly to 0 in θ as M → ∞.

(b) m̄M(θ, ρ̂)− E[m̄M(θ, ρ̂)] converges uniformly in probability to 0 in θ as M → ∞.

(c) m̄M(θ, ρ̂)− E[m̄M(θ,ρ0)] converges uniformly in probability to 0 in θ as M → ∞.

Proof. See the Online Appendix B.

The needed result from Lemma 3 is Statement (c), which allows us to replace ρ̂ with

its limit ρ0 to show the consistency of θ̂. However, this result is not trivial because the

moment function is not continuous for all ρ. We thus first show Statements (a) and (b),

which together imply Statement (c).
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Proof of Theorem 1

We define:

Q0(θ) =
[
limE[m̄M(θ,ρ0)]

]′
W0

[
limE[m̄M(θ,ρ0)]

]
.

As m̄M(θ, ρ̂) converges uniformly in probability to limE[m̄M(θ,ρ0)] in θ (Lemma 3,

Statement (c)) and plimWM = W0 (Assumption 10), by Cauchy-Schwartz (see e.g., Theo-

rem 2.6 in Newey and McFadden, 1994), QM(θ) converges uniformly in probability to Q0(θ).

From Theorem 2.1 in Newey and McFadden (1994), consistency of θ̂ requires: (i) Q0(θ) is

uniquely minimized at θ0 (which holds from Lemma 1 and Assumption 11), (ii) the parameter

space for θ is compact (which holds by Assumption 6), (iii) Q0(θ) is continuous (which holds

from Lemma 2), (iv) QM(θ) converges uniformly in probability to Q0(θ) (which holds by

Lemma 3 and Assumption 10 as pointed out above). Therefore, θ̂ is consistent.

A.2 Proof of the Asymptotic Normality of the SGMM

We show that the SGMM estimator is asymptotically normally distributed. Recall that

m̄M(θ,ρ) =
1

M

∑
m

m̄m(θ,ρ),

and let

m̄∗
M(θ,ρ) =

1

M

∑
m

E (m̄m(θ,ρ)) .

Our proof relies on the following stochastic equicontinuity condition, which is formally

shown in Lemma 4 in Online Appendix B:

CD1.
√
M [m̄M(θ0, ρ̂)− m̄∗

M(θ0, ρ̂)]−
√
M [m̄M(θ0,ρ0)− m̄∗

M(θ0,ρ0)] = op(1)

The first order condition of the empirical objective function QM with respect to θ is
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∂m̄′
M(θ̂, ρ̂)

∂θ
WMm̄M(θ̂, ρ̂) = 0. As m̄M(θ0,ρ0)− m̄M(θ0,ρ0) = 0, this implies:

∂m̄′
M(θ̂, ρ̂)

∂θ
WM

[
m̄M(θ̂, ρ̂)− m̄M(θ0,ρ0) + m̄M(θ0,ρ0)

]
= 0,

Given that m̄M(θ, ρ̂) is differentiable in θ, we replace m̄M(θ̂, ρ̂) in the previous equation

with its mean value expansion. After rearranging the terms we obtain:

∂m̄′
M(θ̂, ρ̂)

∂θ
WM

∂m̄M(θ+, ρ̂)

∂θ′ (θ̂ − θ0) =

− ∂m̄′
M(θ̂, ρ̂)

∂θ
WM [m̄M(θ0, ρ̂)− m̄M(θ0,ρ0) + m̄M(θ0,ρ0)] = 0,

(7)

for some θ+ lying between θ0 and θ̂.

From Lemma 2, m̄∗
M(θ0,ρ) is continuously differentiable in ρ. Thus, it can be replaced

by its mean value expansion, this time with respect to ρ. We obtain:

m̄∗
M(θ0, ρ̂) = m̄∗

M(θ0,ρ0) +
∂m̄∗

M(θ0,ρ
+)

∂ρ′ (ρ̂− ρ0),

for some ρ+ lying between ρ0 and ρ̂. By premultiplying the last equation by
∂m̄′

M(θ̂, ρ̂)

∂θ
WM ,

we obtain:

∂m̄′
M(θ̂, ρ̂)

∂θ
WM

∂m̄∗
M(θ0,ρ

+)

∂ρ′ (ρ̂− ρ0) =
∂m̄′

M(θ̂, ρ̂)

∂θ
WM [m̄∗

M(θ0, ρ̂)− m̄∗
M(θ0,ρ0)] .

By adding the previous equation to (7) and rearranging the terms, we have:

∂m̄′
M(θ̂, ρ̂)

∂θ
WM

∂m̄M(θ+, ρ̂)

∂θ′ (θ̂ − θ0) +
∂m̄′

M(θ̂, ρ̂)

∂θ
WM

∂m̄∗
M(θ0,ρ

+)

∂ρ′ (ρ̂− ρ0)

= −∂m̄
′
M(θ̂, ρ̂)

∂θ
WM [{m̄M(θ0, ρ̂)− m̄∗

M(θ0, ρ̂)} − {m̄M(θ0,ρ0)− m̄∗
M(θ0,ρ0)}]

−∂m̄
′
M(θ̂, ρ̂)

∂θ
WMm̄M(θ0,ρ0). (8)

As for the empirical moment in Lemma 3,
∂m̄M(θ,ρ)

∂θ′ converges uniformly in θ and ρ

because it can be written as an average of independent elements that are differentiable with
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bounded derivatives. Thus, since plim θ̂ = plimθ+ = θ0 and plim ρ̂ = ρ0, we have:

plim
∂m̄M(θ̂, ρ̂)

∂θ′ = plim
∂m̄M(θ+, ρ̂)

∂θ′ = plim
∂m̄∗

M(θ0,ρ0)

∂θ′ ≡ H0. (9)

As usual, we also impose the following assumption so that, under Assumption 10, the matrix

H′
0W0H0 is not singular.

Assumption 12. The matrix H0 has full rank.

Equation (8) implies that:

√
M(θ̂ − θ0) = −(H′

0W0H0)
−1H′

0W0

[√
Mm̄M(θ0,ρ0)+

∂m̄∗
M(θ0,ρ

+)

∂ρ′

√
M(ρ̂− ρ0)

]
+ op(1)

provided that the stochastic equicontinuity condition CD1 holds (see Lemma 4 in Online

Appendix B).

Under Assumption 5,
√
M(ρ̂− ρ0) converges in distribution to a N(0,Vρ), and

plim
∂m̄∗

M(θ0,ρ
+)

∂ρ′ ≡ Γ0,

exists by the uniform law or large numbers. Thus,
∂m̄∗

M(θ0,ρ
+)

∂ρ′

√
M(ρ̂ − ρ0) converges in

distribution to a N(0,Γ0VρΓ
′
0).

We now apply the Lyapunov CLT to
√
Mm̄M(θ0,ρ0) since it is a normalized sum of inde-

pendent elements. However, as we need the joint asymptotic distribution of
√
Mm̄M(θ0,ρ0)

and
√
M(ρ̂ − ρ0) to be normal, we apply the Lyapunov CLT conditional on

√
M(ρ̂ − ρ0).

The Lyapunov condition (conditional
√
M(ρ̂−ρ0)) is verified by Assumption 8.31 Thus the

asymptotic distribution of
√
Mm̄M(θ0,ρ0), conditional on

√
M(ρ̂ − ρ0) is normal, which

implies that the joint asymptotic distribution of
√
Mm̄M(θ0,ρ0) and

√
M(ρ̂ − ρ0) is nor-

31See for example, Van der Vaart (2000), Section 23.4
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mal. Consequently
√
Mm̄M(θ0,ρ0) +

∂m̄∗
M(θ0,ρ

+)

∂ρ′

√
M(ρ̂−ρ0) is asymptotically normally

distributed. As a result,
√
M(θ̂ − θ0) is asymptotically normally distributed.

Estimating the asymptotic variance of
√
M(θ̂−θ0) requires an estimate of Γ0, which can

be complex. In Online Appendix B.2, we present an approach to estimate this asymptotic

variance without requiring an estimate of Γ0.
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