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B Proof of Theorem 1: Additional Material

Lemma 2 (Differentiability). E[mm(θ,ρ)] is continuously differentiable in (θ,ρ).

Proof. Since mm(θ,ρ) is continuously differentiable in θ and absolutely integrable, along

with its derivative with respect to θ, it follows that E[mm(θ,ρ)] is continuously differentiable

in θ by the Leibniz integral rule. However, mm(θ,ρ) is continuously differentiable in ρ only

for almost all ρ. We now show that E[mm(θ,ρ)] is continuously differentiable for all ρ.

Consider BmĠm(ρ) = Bmf(Ȧm(ρ)) for some (conformable) matrix Bm. We have:

Êm(BmĠm(ρ)) =
∑
Âm

Bmf(Âm)P (Am(ρ) = Âm | Xm, κ(Am)), (10)

where the sum is taken over all the possible network configurations Âm, and where

P (Am(ρ) = Âm|Xm, κ(Am)) = ΠijP (aij,m(ρ) = âij,m|Xm, κ(Am)), as defined in Equation

(2). Thus Êm(BmĠm(ρ)) is continuously differentiable in ρ by Assumption 9. By adapting

this argument for the appropriate definition of the matrix Bm, and for Êm, and E(0)
m , this

shows that E[mm,rst(θ,ρ)|Xm, κ(Am)] is continuously differentiable in (θ,ρ). As a result,

E[mm(θ,ρ)] is continuously differentiable in (θ,ρ) by the Leibniz integral rule.

Lemma 3 (Uniform convergence). We establish the following results.

(a) E[m̄M(θ, ρ̂)]− E[m̄M(θ,ρ0)] converges uniformly to 0 in θ as M → ∞.

(b) m̄M(θ, ρ̂)− E[m̄M(θ, ρ̂)] converges uniformly in probability to 0 in θ as M → ∞.

(c) m̄M(θ, ρ̂)− E[m̄M(θ,ρ0)] converges uniformly in probability to 0 in θ as M → ∞.

Proof. As E[m̄M(θ,ρ)] is nonstochastic and continuously differentiable in ρ (Lemma 2), it

follows that E[m̄M(θ, ρ̂)] − E[m̄M(θ,ρ0)] converges to 0 pointwise for each θ, given that

plim ρ̂ = ρ0. To establish uniform convergence, we apply Lemma 2.9 in Newey and McFad-
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den (1994). The required conditions are satisfied: (i) the space of θ is compact (Assumption

6), (ii) E[m̄M(θ, ρ̂)] − E[m̄M(θ,ρ0)] converges to 0 for all θ, and (iii) the derivative of

E[m̄M(θ, ρ̂)] − E[m̄M(θ,ρ0)] with respect to θ is bounded in probability (Assumptions 1

and 7). As a result, E[m̄M(θ, ρ̂)] − E[m̄M(θ,ρ0)] uniformly converges to zero in θ. This

completes the proof of Statement (a).

For Statement (b), we first establish pointwise convergence by showing that the variance

of m̄M(θ, ρ̂) vanishes asymptotically. By the law of iterated variances, we have:

V(m̄M(θ, ρ̂)) = V
{
E
(
m̄M(θ, ρ̂)|X, κ(A), ρ̂

)}
+ E

{
V
(
m̄M(θ, ρ̂)|X, κ(A), ρ̂

)}
,

limV(m̄M(θ, ρ̂)) = V
{
plimE

(
m̄M(θ, ρ̂)|X, κ(A), ρ̂

)}
+

E
{
plimV

(
m̄M(θ, ρ̂)|X, κ(A), ρ̂

)}
,

limV(m̄M(θ, ρ̂)) = V
{
plimE

(
m̄M(θ, ρ̂)|X, κ(A), ρ̂

)}
+

E

{
plim

1

M2

M∑
m=1

V
(
mm(θ, ρ̂)|Xm,Am, ρ̂

)}
.

(11)

The second equality holds by the dominated convergence theorem.32 Equation (11) holds by

the fact that mm(θ, ρ̂) are independent across m, conditional on Xm,Am, ρ̂.

From Equation (11), it is thus sufficient to show that plimE(m̄M(θ, ρ̂)|X, κ(A), ρ̂) is

nonstochastic and that plim
1

M2

M∑
m=1

V(mm(θ, ρ̂)|Xm,Am, ρ̂) = 0. First, the variance of

E[m̄M(θ,ρ)|Xm, κ(Am)] vanishes asymptotically by being the variance of an average of in-

dependent elements. Therefore, it converges in L2 and, thus, in probability to its expec-

tation, E[m̄M(θ,ρ)], which is nonstochastic. Consequently, plimE(m̄M(θ, ρ̂)|X, κ(A), ρ̂) is

also nonstochastic and, thus, V{plimE(m̄M(θ, ρ̂)|X, κ(A), ρ̂)} = 0.
32Specifically, E(m̄M (θ, ρ̂) | X, κ(A), ρ̂) and V(m̄M (θ, ρ̂) | X, κ(A), ρ̂) are bounded by Assumptions 1

and 7, as well as by the fact that the conditional variance of εm is uniformly bounded (Assumption 8).
Consequently, we can interchange the expectation and probability limit operators.
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Second, V(mm(θ, ρ̂)|Xm,Am, ρ̂) < ∞ because mm(θ, ρ̂) is linear in εm which has a

bounded variance (Assumption 8). Thus, plim
1

M2

M∑
m=1

V(mm(θ, ρ̂)|Xm,Am, ρ̂) = 0 and

E{plim 1

M2

M∑
m=1

V(mm(θ, ρ̂)|Xm,Am, ρ̂)} = 0.

Consequently, m̄M(θ, ρ̂)− E[m̄M(θ,ρ0)] converges in probability to 0. The convergence

is uniform in θ from Lemma 2.9 of Newey and McFadden (1994) as in Statements (a). This

completes the proof of Statement (b) and, consequently, the lemma, given that Statements

(a) and (b) together imply Statement (c).

Lemma 4. The stochastic equicontinuity condition CD1 is verified.

Proof. As θ0 in CD1 is fixed, we ignore it in our notations and define m̃m(ρ) = mm(θ0,ρ).

We follow Andrews (1994) and define

νM(ρ) =
1√
M

∑
m

[m̃m(ρ)− E(m̃m(ρ))],

so that conditions CD1 is equivalent to νM(ρ̂) − νM(ρ0) = op(1). Consider the following

pseudo-metric, for any dimension k of the moment function

dk(ρ1,ρ2) = sup
m

(E[m̃m,[k](ρ1)− m̃m,[k](ρ2)]
2)1/2.

We say that the process νM is stochastically equicontinuous if, ∀ϵ > 0, ∃δ > 0 such that

plim sup
dk(ρ1,ρ2)<δ

|νM,[k](ρ1)− νM,[k](ρ2)| < ϵ,

for each dimension [k]. To see that stochastic equicontinuity implies CD1, note that, for any

ϵ > 0:

limP (|νM,[k](ρ̂)− νM,[k](ρ0)| > ϵ)

≤ limP (|νM,[k](ρ̂)− νM,[k](ρ0)| > ϵ, dk(ρ̂,ρ0) ≤ δ) + limP (dk(ρ̂,ρ0) > δ)
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≤ limP

(
sup

d(ρ1,ρ2)<δ

|νM,[k](ρ̂)− νM,[k](ρ0)| > ϵ

)

The last inequality holds because limP (dk(ρ̂,ρ0) > δ) = 0 by the consistency of ρ̂. Stochas-

tic equicontinuity implies that δ can be chosen so that limP
(

sup
d(ρ1,ρ2)<δ

|νM,[k](ρ̂)−νM,[k](ρ0)| >

ϵ
)

is as small as desired. Thus, limP (|νM,[k](ρ̂)−νM,[k](ρ0)| > ϵ) can also be made arbitrarily

small, that is, νM(ρ̂)− νM(ρ0) = op(1), which corresponds to our condition CD1. It is thus

sufficient to show that νM is stochastically equicontinuous.

Following Andrews (1994), Section 5, we say that m̃m is Type IV (p = 2) if the parameter

space is bounded (Assumption 6) and

sup
m

(
E
(

sup
ρ1:∥ρ1−ρ2∥<δ

(m̃m,[k](ρ1)− m̃m,[k](ρ2))
2
))1/2

≤ Cδψ, (12)

for all ρ2 and all δ > 0 in a neighborhood of 0, for some finite positive constants C and ψ,

and for all dimensions [k].

We can express m̃m,[k](ρ) as a linear function of εm (e.g., see Equation (6) in Ap-

pendix A.1). Thus, m̃m,[k](ρ1) − m̃m,[k](ρ2) = u1,m,[k](ρ1,ρ2) + u2,m,[k](ρ1,ρ2)εm for some

scalar u1,m,[k](ρ1,ρ2) and row vector u2,m,[k](ρ1,ρ2). Additionally, by Assumptions 1 and 7,

|u1,m,[k](ρ1,ρ2)| and ∥u2,m,[k](ρ1,ρ2)∥ are uniformly bounded by some ū1,[k] and ū2,[k], respec-

tively, where ū1,[k] and ū2,[k] do not depend on ρ1 and ρ2. Therefore, (m̃m,[k](ρ1)−m̃m,[k](ρ2))
2

is dominated by (ū1,[k] + ū2,[k]∥εm∥)2, for any sub-multiplicative norm ∥·∥.

Since (ū1 + ū2∥εm∥)2 is integrable (see Assumption 8), we can apply the dominated

convergence theorem and interchange the expectation and the second supremum symbol in

(12). A sufficient condition for (12) is thus:

sup
m

(
sup

ρ1:∥ρ1−ρ2∥<δ
E((m̃m,[k](ρ1)− m̃m,[k](ρ2))

2)
)1/2

≤ Cδψ. (13)
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Now, note that E(m̃m,[k](ρ1) − m̃m,[k](ρ2))
2 is continuously differentiable in ρ1 with

bounded derivatives following the argument in Lemma 2. See in particular Equation (10).33

Then, by the Mean Value Theorem, we have E(m̃m,[k](ρ1)−m̃m,[k](ρ2))
2 = D(ρ+,ρ2)(ρ1−

ρ2), where D(ρ+,ρ2) is the derivative of E(m̃m,[k](ρ1) − m̃m,[k](ρ2))
2 with respect to ρ1 at

some ρ+ lying between ρ1 and ρ2. Thus, m̃m is of Type IV with p = 2, ψ = 1/2, and C as

the upper bound of D(ρ+,ρ2). As a result, Condition (13), and thus Condition (12), hold.

By Theorem 4 in Andrews (1994), stochastic equicontinuity CD1 holds if Ossianders’

condition (his condition D) holds, lim
1

M

∑
m

E sup
ρ

|m̃m|2+η < ∞ for some η > 0 (his condi-

tion B), and if groups m are independent (Assumption 1) implied by his condition C). By

Theorem 5 in Andrews (1994), Ossianders’ condition holds if m̃m is Type IV (p = 2), which

we just shown. His condition B is verified because E(∥εm∥2+η) is bounded for some η > 0

(Assumption 8). Thus, as above, we can employ the dominated convergence theorem and

interchange the expectation and the second supremum. Since E|m̃m|2+η is bounded, then

condition B follows.

B.1 Identification

In this section, we show that Assumption 11 can be expressed as an identification condition

on a concentrated objective function.

As W0 is positive definite (Assumption 10), Assumption 11 is equivalent to stating that

Q0(θ) has a unique minimizer. Since Q0(θ) depends on the true value ρ0 and not its

estimator, all simulated networks in this section are drawn from the true network distribution.
33The derivative is bounded because the linking probabilities have bounded derivatives (Assumption 9),

and Xm, E(∥εm∥2), and the entries of the network matrices are bounded (Assumptions 1, 7, and 8).
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We therefore omit ρ0 from the notation for simplicity.

We define:

Bm(α) =
1

RST

∑
rst

Ż(r)′
m (Im − αG̈(s)

m )(Im − α
...
G

(t)

m )−1
...
V

(t)

m ,

Dm(α) =
1

RS

∑
rs

Ż(r)′
m (Im − αG̈(s)

m ).

We have m̄M(θ,ρ0) =
1
M

∑
m[Dm(α)ym − Bm(α)θ̃]. The first-order condition of the mini-

mization of Q0(θ) with respect to θ̃ is:[
lim

1

M

∑
m

E [Bm(α)] θ̃

]′
W0

[
lim

1

M

∑
m

(
E [Dm(α)ym]− E [Bm(α)] θ̃

)]
= 0.

A sufficient condition for the last equation to have a unique solution in θ̃ is that B̄0(α) :=

lim 1
M

∑
m E [Bm(α)] is a full rank matrix for all α. Under this condition, the solution θ̃ can

be expressed as:

ˆ̃θ(α) = [B̄′
0(α)W0B̄0]

−1B̄′
0(α)W0F̄0(α),

where F̄0(α) = plim 1
M

∑
mDm(α)ym. By replacing ym = (Im − α0Gm)

−1(Vmθ̃0 + εm) in

the expression of F̄0(α), we obtain:

F̄0(α) = lim
1

M

∑
m

E [Fm(α)] , where

Fm(α) =
1

RS

∑
rs

E
(
Ż(r)′
m (Im − αG̈(s)

m )(Im − α0Gm)
−1Vmθ̃0

)
.

Since F̄0(α0) = B̄0(α0)θ̃0, it follows that ˆ̃θ(α0) = θ̃0, which means that θ̃0 is identified if α0

is identified; the underlying condition being that B̄0(α) is full rank.

By replacing the solution ˆ̃θ(α) in the objective function, we can concentrate Q0(θ) around

α as Qc
0(α) = Q̄c(α)′W0Q̄

c(α), Where

Q̄c(α) = F̄0(α)− B̄0(α)[B̄
′
0(α)W0B̄0]

−1B̄′
0(α)W0F̄0(α).
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Let W
1/2
0 be the positive definite square root of W0. We have W

1/2
0 Q̄c(α) = [Iw −

PB(α)]W
1/2
0 F̄0(α), where PB(α) := W

1/2
0 B̄0(α)[B̄

′
0(α)W0B̄0]

−1B̄′
0(α)W

1/2
0 is a projection

matrix onto the space of the column of W1/2
0 B̄0(α) and Iw if the identity matrix of the same

dimension as W0. The concentrated objective function can be written as:

Qc
0(α) = [W

1/2
0 F̄0(α)]

′[Iw −PB(α)]W
1/2
0 F̄0(α).

For Assumption 11 to hold, the equation Qc
0(α) = 0 must not have multiple solutions.

Unfortunately, simplifying this condition is challenging due to the nonlinearity of Qc
0(α). A

similar issue arises with the maximum likelihood estimator even when the network is fully

observed. In this case, the identification condition also leads to a nonlinear equation in the

peer effect parameter (see Lee, 2004, Assumption 9).

Nevertheless, it is straightforward to sketch the empirical counterpart of Qc
0(α) since it

is a function of a single variable. In numerous simulation exercises, we observe that Qc
0(α)

is strictly convex, even when all entries of Am are simulated from an estimated distribution

(without setting some entries to observed data). This evidence is encouraging and suggests

that the solution to Qc
0(α) = 0 is likely unique.

B.2 Asymptotic variance estimation

Estimating the asymptotic variance of
√
M(θ̂−θ0) can be challenging, as it requires comput-

ing the derivative of the expected moment function to estimate Γ0 = plim
∂m̄∗

M(θ0,ρ
+)

∂ρ′ (see

Appendix A.2). We now present a simple method for estimating this asymptotic variance

by adapting Houndetoungan and Maoude (2024).

Taking the first derivative of the objective function at the second stage (for finite R,S,T
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and conditional on ρ̂) with respect to θ, we have(
∂m̄M(θ̂,ρ)

∂θ′

)′

WM [m̄M(θ̂,ρ)] = 0.

By applying the mean value theorem to m̄M(θ,ρ), we have

√
M(θ̂ − θ0) = −

[
HM(θ̂)′WMHM(θ∗)

]−1

HM(θ̂)′WM
1√
M

M∑
m=1

mm(θ0, ρ̂),

where HM(θ) =
∂m̄M(θ, ρ̂)

∂θ′ and θ∗ is some point between θ̂ and θ0.

Let ΩM = V( 1√
M

∑M
m=1mm(θ0, ρ̂)). We assume the following:

Assumption 13. plimΩM = Ω0 and plimHM(θ0) = H0 exist and are finite matrices.

Under this assumption, the asymptotic variance of
√
M(θ̂ − θ0) is:

V0(
√
M(θ̂ − θ0)) = (H′

0W0H0)
−1H′

0W0Ω0W0H0(H
′
0W0H0)

−1.

The expression for the asymptotic variance is similar to the variance of the standard GMM

estimator. The key difference is that Ω0, which is the asymptotic variance of
1√
M

M∑
m=1

mm(θ0, ρ̂),

accounts for the uncertainty in εm, the first-stage estimator ρ̂, and the finite number of sim-

ulated networks from the estimated network distribution.

To estimate V0(
√
M(θ̂ − θ0)), one can replace H0 and W0 with their usual estimators.

Specifically, H0 can be estimated by HM(θ̂) and W0 can be estimated by WM . Let S be the

set of simulated networks from the network distribution and the true network. To estimate

Ω0, we rely on the following decomposition.

ΩM = V

(
1√
M

M∑
m=1

mm(θ0, ρ̂)

)
,

ΩM = E

{
V

(
1√
M

M∑
m=1

mm(θ0, ρ̂)|Xm,S

)}
+ V

{
E

(
1√
M

M∑
m=1

mm(θ0, ρ̂)|Xm,S

)}
,
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ΩM = E

(
1

M

M∑
m=1

Vm

)
+ V

(
1√
M

M∑
m=1

Em

)
.

where Vm = V (mm(θ0, ρ̂)|Xm, ρ̂, κ(Am)) and Em = E (mm(θ0, ρ̂)|Xm, ρ̂, κ(Am)).

Note that both Vm and Em can be easily computed and estimated. They represent the

conditional variance and the conditional expectation of the moment function, given S.

Let VM =
1

M

M∑
m=1

Vm and EM =
1√
M

M∑
m=1

Em. It follows that:

Ω0 = plimVM + limV (EM) .

The first term is due to the error term of the model εm, whereas the second term reflects

the uncertainty associated with the estimation of ρ̂ and the simulated networks. In practice,

plimVM can be estimated by the average of the conditional variance of the moment function

without accounting for the uncertainty in the simulated network. To estimate limV (EM),

we repeatedly generate many S, each associated with a new ρ simulated from the estimator

of the distribution of ρ̂. For each S, we compute the associated EM . Finally, the sample

variance of the generated values of EM serves as an estimator of limV (EM).34

C Additional Results

C.1 Simple estimators

When the network is fully observed, the moment function of the standard instrumental vari-

ables approach is linear in parameters (Bramoullé et al., 2009). Consequently, the estimator

can be computed without requiring numerical optimization and identification conditions can

be easily tested. Our SGMM estimator does not exhibit such simplicity when Gmym is not
34Our R package offers tools to compute this variance.
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observed. In this section, we discuss other straightforward estimators that result from a

linear moment function. We first discuss the case where GmXm and Gmym are observed.

Proposition 1. [Conditions] Suppose that GmXm and Gmym are observed. Let Hm be

a matrix such that (1) at least one column of Hk
mXm is (strongly) correlated with Gmym,

conditional on [1m,Xm,GmXm] for k ≥ 2, and (2) E[εm|Xm,Am,Hm] = 0 for all m.

Finally, define the matrix Zm = [1m,Xm,GmXm,H
2
mXm,H

3
mXm...].

[Results] Then, under classical assumptions (e.g., Cameron and Trivedi (2005), Proposi-

tion 6.1), the (linear) GMM estimator based on the moment function
1

M

∑
m

Z′
mεm is consis-

tent and asymptotically normally distributed with the usual asymptotic variance-covariance

matrix.

Condition (1) is the relevancy condition, whereas condition (2) is the exogeneity condi-

tion.35 Although Proposition 1 holds for any matrix Hm such that conditions (1) and (2)

hold, the most sensible example in our context is when Hm is constructed using a draw from

P̂ (Am|ρ̂,Xm, κ(Am)).

Importantly, the moment conditions remain valid even when the researcher uses a mis-

pecified estimator of the distribution P (Am|Xm, κ(Am)), as long as the specification error on

P (Am|Xm, κ(Am)) does not induce a correlation with εm.36 This could be of great practical

importance, especially if the estimation of P̂ (Am|ρ̂,Xm, κ(Am)) suffers from a small sample

bias.

Second, we present a simple, but asymptotically biased, linear GMM estimator when
35Although (for simplicity) in Proposition 1, we use the entire matrix Xm to generate the instruments

HmXm, in practice, one should avoid including instruments (i.e., columns of HmXm) that are weakly
correlated with Gmym.

36We would like to thank Chih-Sheng Hsieh and Arthur Lewbel for discussions on this important point.
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GmXm is observed and Gmym is not. The presentation of such an estimator is useful

because simulations show that the asymptotic bias turns out to be negligible in many cases,

especially for moderate group sizes. Moreover, the estimator is computationally attractive

because the estimator can be written in a closed form.

Proposition 2. [Conditions] Assume that GmXm is observed. Let S̈m = [1m,Xm,GmXm,

G̈mXm, G̈mym] and Żm = [1m,Xm,GmXm, G̈mXm, Ġ
2
mXm, Ġ

3
mXm, ...]. We consider the

moment function
1

M

M∑
m=1

Żm(ym − S̈mθ̈) and θ̌ be the associated GMM estimator of θ̈. We

define the sensitivity matrix R =

(∑
m S̈′

mŻm
M

WM

∑
m Ż′

mS̈m
M

)−1 ∑
m S̈′

mŻm
M

WM .

[Result] Under classical assumptions (see proof), the asymptotic bias of θ̂ is given by

α0 plim
R
∑

m Ż′
m(Gm − G̈m)ym
M

. Moreover, letting WM be an identity matrix minimizes

the asymptotic bias in the sense of minimizing the Frobenius norm of R.

Although there are no obvious ways to obtain a consistent estimate of the asymptotic

bias (because ym is a function of Gm and α0), simulations show that the bias is very small

in practice.

The intuition behind Proposition 2 comes from the literature on error-in-variable models

with repeated observations (e.g., Bound et al. (2001)). The instrumental variable uses two

independent draws from the (estimated) distribution of the true network. One draw is

used to proxy the unobserved variable (i.e., Gmym), whereas the other is used to proxy the

instrument (i.e., GmXm). This approach greatly reduces the bias compared with a situation

in which only one draw would be used.

The argument in Proposition 2 is very similar to the one in Andrews et al. (2017),
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although here perturbation with respect to the true model is not local.37 We also show that

we expect the identity matrix weight to minimize the asymptotic bias. Our result therefore

provides a theoretical justification for the simulations in Onishi and Otsu (2021) who show

that using the identity matrix to weight the moments greatly reduces the bias in the context

studied by Andrews et al. (2017).

C.1.1 Proof of Proposition 2

Part 1: Asymptotic bias

Let θ̈0 be the true value the parameter when regressors are defined as S̈m = [1m,Xm,GmXm,

G̈mXm, G̈mym]; that is, the true coefficient vector associated with [1m,XmGmXm, G̈mym]

is θ0 while the true coefficient vector associated with G̈mXm is zero.

We now use matrix notation as the sample level to avoid summations over m and the

index m. For example, Ż′S̈ =
∑
m

Ż′
mS̈m. The Linear GMM estimator can be written as

θ̌ =

(
S̈′Ż

M
WM

Ż′S̈

M

)−1
S̈′Ż

M
WM Ż′

(
S̈θ̈0 + η + ε

M

)

where η = α0(G − G̈)y is due to the approximation of Gy by G̈y in S̈. Therefore θ̌ =

θ̈0+R

(
Ż′η + Ż′ε

M

)
and the asymptotic bias of θ̌ is plim(θ̌− θ̈0) = α0 plim

RŻ′(G− G̈)y

M
.

Part 2: Choice of W (we omit the index M for simplicity)

Let ∆ = G − G̈, K = Ż′∆G2/M , if γ = 0, and K = Ż′∆/M otherwise. Consider

∥RK∥F =
√
trace(K′R′RK) =

√
trace(KK′R′R). We have

(1/M2)RR′ = [S̈′ŻWŻ′S̈]−1S̈′ŻWWŻ′S̈[S̈′ŻWŻ′S̈]−1.

37See page 1562 in Andrews et al. (2017).
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Let W = C′C and let B = S̈′ŻC′. We have

(1/M2)RR′ = (B′B)−1B′CC′B(B′B)−1.

Now, define J′ = (B′B)−1B′C− (B′(C′)−1C−1B)−1B′(C′)−1. We have

(1/M2)RR′ = J′J+ (B′(C′)−1C−1B)−1 = J′J+ (S̈′ŻŻ′S̈)−1.

Therefore, we have

(1/M2)∥R∥F =

√
trace(J′J+ (S̈′ŻŻ′S̈)−1) =

√
trace(J′J) + trace((S̈′ŻŻ′S̈)−1).

When W = I, we have that J = 0 and the Frobenius norm of R is given by

M2

√
trace((S̈′ŻŻ′S̈)−1).

C.2 Corollaries to Theorem 1

Corollary 1. Assume that GmXm is observed but that Gmym is not observed. Let Ż(r)
m =

[1m,Xm,GmXm, Ġ
(r)
m GX, (Ġ(r)

m )2GmXm, ...],

Z̈(r,s)
m = [1m,Xm, G̈

(s)
m Xm, Ġ

(r)
m G̈(s)

m Xm, (Ġ
(r)
m )2G̈(s)

m Xm, ...], Vm = [1m,Xm,GmXm], and

V̈(s)
m = [1m,Xm, G̈

(s)
m Xm]. Then, the results from Theorem 1 hold for the following (sim-

ulated) moment function:

m̄M(θ) =
1

M

∑
m

1

R

∑
r

Ż(r)′
m (Im − αĠ(r)

m )ym − 1

RS

∑
r,s

(Ż(r)′
m Vm − Z̈(r,s)′

m V̈(s)
m )θ̃

− 1

RS

∑
r,s

Z̈(r,s)′
m (Im − αĠ(r)

m )(Im − αG̈(s)
m )−1V̈(s)

m θ̃ (14)

under the same conditions.

Corollary 2. Assume that Gmym is observed but that GmXm is not observed. Let Ż(r)
m =

[1m,Xm, Ġ
(r)
m Xm, (Ġ

(r)
m )2Xm, ...], and V̈(s)

m = [1m,Xm, G̈
(s)
m Xm]. Then, the results from The-
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orem 1 hold for the following (simulated) moment function:

1

R

∑
r

Ż(r)′
m (Im − αGm)ym − 1

RS

∑
r,s

Ż(r)′
m V̈(s)

m θ̃ (15)

under the same conditions.

D Specific network formation models

D.1 Graham (2017)

Graham (2017) presents a network formation process for undirected networks. As mentioned,

all of our results hold for undirected networks with the appropriate notation changes. The

network formation process in Graham (2017) is as follows:

P (aij,m = 1|Xm) =
exp{wij,mρ+ νi.m + νj,m}

1 + exp{wij,mρ+ νi,m + νj,m}

for all pairs ij : i < j.

Graham (2017) assumes (his Assumption 3) that the researchers observes a random

sample of pairs (aij,m,wij,m). While the individual level fixed effect νi cannot be consistently

estimated when the group sizes are bounded (see our Assumption 1), Graham (2017) shows

that the degree distribution (i.e., the number of links individuals have) is a sufficient statistic

for ν, the vector of νi,m’s. He presents an estimator (the “Tetrad Logit”) that allows for the

consistent estimation of ρ conditional on the degree sequence. Specifically, he shows that:

P (Am|Xm, ā) =
exp{

∑
ij:i<j aijwijρ}∑

B:b̄=ā exp{
∑

ij:i<j bijwijρ}
, (16)

where ā and b̄ are the degree sequences of the adjacency matrices A and B. Note that the

denominator in Equation (16) sums only over the network structures that have the same
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degree sequence as A. Note also that Equation (16) does not depend on ν.

Thus, the estimation of (16) is possible if one observes (i) a random sample of pairs, and

(ii) the number of links for each individual belonging to a sampled pair (see Theorem 1 in

Graham (2017)).38

D.2 Boucher and Mourifié (2017)

Boucher and Mourifié (2017) present a network formation model for undirected networks.

Their network formation model, which is a special case of an exponential random graph

model (ERGM) is as follows:

P (aij,m = 1|Xm) =
exp{wij,mρ̃+ (ni,m + nj,m)ρ1 + ψ(d(x̃i,m, x̃j,m))ρ2}

1 + exp{wij,mρ̃+ (ni,m + nj,m)ρ1 + ψ(d(x̃i,m, x̃j,m))ρ2}

for all pairs ij : i < j, where ni,m and nj,m represent the number of links that i and j

have. Importantly, x̃i,m and x̃j,m are non-stochastic “positions” of i and j on an underlying

Euclidean space (e.g., geographical distance), and d(x̃i,m, x̃j,m) is a distance (and ψ is some

increasing function, see below). Under the restriction that d(x̃i,m, x̃j,m) ≥ d0 > 0 for all i and

j and that ρ2 < ρ < 0, Boucher and Mourifié (2017) show that ρ = [ρ̃, ρ1, ρ2] is consistently

estimated by a simple pseudo-logistic regression.

While they do not consider bounded groups, their setup is compatible with our framework.

To do so, however, we need to adapt our framework and ensure that individuals (and groups)

are also drawn on some non-stochastic Euclidean space (e.g., geographical location). Then,

their estimator is valid if we assume that (1) groups are drawn in a way that the distance

(on the non-stochastic space) between each pair of individuals within the group is bounded
38The theorem also requires weak conditions on the asymptotic degree sequence, see Assumption 4 in

Graham (2017).
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below, that (2) any pairs of individuals from two different groups are located at a distance

(again, on the non-stochastic space) greater than d̄ > d0, and that (3) ψ(d) = d when d ≤ d̄,

while ψ(d) = ∞ if d > d̄. Essentially, this ensures that no link can be created between

individuals of different groups.

Then, as for Graham (2017), the estimation of the network formation process in Boucher

and Mourifié (2017) can be done if the researcher observes (i) a random sample of pairs, and

(ii) the number of links for each individual belonging to a sampled pair.

D.3 Other ERGM

Exponential Random Graph models (ERGM) are such that:39

P (Am|Xm) =
exp{q(Am,Xm)ρ}∑
Bm

exp{q(Bm,Xm)ρ}
,

where q is a known function and the sum in the denominator is over all the possible network

structures Bm for the group m. Microfoundations for ERGM can be found in Mele (2017)

and Hsieh et al. (2020). Since ERGM are from the exponential family, q(Am,Xm) are the

sufficient statistics for ρ. This means that consistent estimation of ρ requires consistent

estimation of these sufficient statistics. This in turns implies that the sampling process that

generates Am must allow for this. We give two simple examples below.

D.3.1 Reciprocal links

This simplest possible ERGM is such that:

P (Am|Xm) ∝ exp{
∑
ij

(aijwijρ̃+ ρ1aijaji)},

39We focus on cases for which the term inside the exponential is linear in ρ for simplicity.
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where ρ = [ρ1, ρ̃]. When ρ1 = 0, the model reduces to the baseline model in Equation (2).

Here ρ1 > 0 implies that reciprocal links (when i is linked to j and j is linked to i) are more

likely than what would be expected from a model with conditionally independent links.

Estimation of such a model requires sampling pairs of individuals, and observing their

linking status without error, in order to recover the sufficient statistics: the fraction of links

(given a set of observed pair characteristics wij), and the fraction of reciprocal links. For this

simple example, the estimation via maximum likelihood is straightforward and our results

follow.

D.3.2 Transitive triads

A typical feature of the data that is hard to replicate using the model in Equation (2) is

the fraction of transitive triads. That is, if i is linked to j and j is linked to k, then the

probability that i and k are linked is higher than what would be predicted by a model with

conditionally independent links. Consider the following ERGM:

P (Am|Xm) ∝ exp{
∑
ij

(aijwijρ̃+ ρ1aijaji + ρ2
∑
k

aijajkaki)},

which now includes the number of directed triangles (cycles of length 3). If ρ2 > 0, then

network configurations in which i is linked to j, j is linked to k, and k is linked to i are more

likely (everything else equal).

Here, the sufficient statistics are: the fraction of links (given a set of observed pair char-

acteristics wij), the fraction of reciprocal links, and the fraction of closed directed triangles.

This already requires sampling triads of individuals, which substantially complicates the

sampling design. We are not aware of any such application. We also note that even with the
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consistent estimation of sufficient statistics, the estimation of ρ is not straightforward and

computationally intensive. These considerations are left for future research.

E Full Simulation Results

Tables E.1–E.4 report simulation results. We also report simulations for cases where Gmym

and/or GmXm is observed, including cases that account for unobserved group heterogeneity.

The estimator still performs well in these settings. Precision improves significantly when

Gmym is observed, more so than when GmXm is observed. This occurs because Gmym is

a nonlinear function of the true network Gm and peer effect coefficient α0. Therefore, its

approximation is more challenging than that of GmXm, which is exogenous.
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Table E.1: Full simulation results under missing links without group fixed effects

Proportion of
missing links

0% 25% 50% 75%

Statistic Mean Std Mean Std Mean Std Mean Std

Classical IV: Gy observed and GX unobserved; Instruments: GX2

α = 0.538 0.537 0.008 0.531 0.014 0.525 0.023 0.518 0.055
c = 3.806 3.807 0.132 4.378 0.168 4.885 0.267 5.336 0.638
β1 = −0.072 −0.072 0.009 −0.089 0.011 −0.106 0.015 −0.124 0.030
β2 = 0.133 0.133 0.027 0.136 0.030 0.141 0.030 0.143 0.033
γ1 = 0.086 0.086 0.005 0.063 0.005 0.046 0.006 0.033 0.010
γ2 = −0.003 −0.003 0.037 −0.009 0.036 −0.013 0.040 −0.013 0.052

Classical IV: Gy and GX unobserved; Instruments: GX2

α = 0.538 0.537 0.008 0.442 0.014 0.362 0.021 0.293 0.043
c = 3.806 3.807 0.132 6.598 0.325 8.931 0.412 10.789 0.474
β1 = −0.072 −0.072 0.009 −0.176 0.021 −0.273 0.028 −0.358 0.033
β2 = 0.133 0.133 0.027 0.151 0.058 0.168 0.072 0.186 0.084
γ1 = 0.086 0.086 0.005 0.030 0.008 −0.006 0.011 −0.027 0.022
γ2 = −0.003 −0.003 0.037 −0.028 0.045 −0.046 0.054 −0.050 0.078

SGMM: Gy and GX observed; T = 100

α = 0.538 0.537 0.008 0.537 0.012 0.538 0.015 0.539 0.021
c = 3.806 3.807 0.132 3.811 0.133 3.801 0.136 3.805 0.150
β1 = −0.072 −0.072 0.009 −0.073 0.009 −0.072 0.009 −0.072 0.010
β2 = 0.133 0.133 0.027 0.132 0.028 0.134 0.026 0.132 0.026
γ1 = 0.086 0.086 0.005 0.086 0.006 0.086 0.007 0.086 0.010
γ2 = −0.003 −0.003 0.037 −0.003 0.036 −0.003 0.037 −0.003 0.038

SGMM: Gy observed and GX unobserved; S = T = 100

α = 0.538 0.537 0.008 0.538 0.012 0.538 0.019 0.540 0.033
c = 3.806 3.807 0.132 3.812 0.150 3.806 0.178 3.802 0.225
β1 = −0.072 −0.072 0.009 −0.073 0.010 −0.072 0.011 −0.072 0.014
β2 = 0.133 0.133 0.027 0.132 0.030 0.134 0.030 0.132 0.032
γ1 = 0.086 0.086 0.005 0.086 0.006 0.086 0.010 0.085 0.016
γ2 = −0.003 −0.003 0.037 −0.003 0.042 −0.003 0.056 −0.004 0.081

SGMM: Gy unobserved and GX observed; S = T = 100

α = 0.538 0.537 0.008 0.538 0.015 0.538 0.027 0.540 0.064
c = 3.806 3.807 0.132 3.817 0.263 3.819 0.350 3.803 0.492
β1 = −0.072 −0.072 0.009 −0.073 0.016 −0.073 0.021 −0.072 0.030
β2 = 0.133 0.133 0.027 0.132 0.047 0.133 0.057 0.135 0.066
γ1 = 0.086 0.086 0.005 0.086 0.009 0.086 0.014 0.085 0.031
γ2 = −0.003 −0.003 0.037 −0.002 0.050 −0.005 0.076 −0.004 0.136

SGMM: Gy and GX unobserved; R = S = T = 100

α = 0.538 0.537 0.008 0.538 0.016 0.539 0.029 0.542 0.073
c = 3.806 3.807 0.132 3.816 0.314 3.821 0.423 3.794 0.580
β1 = −0.072 −0.072 0.009 −0.073 0.019 −0.073 0.026 −0.071 0.036
β2 = 0.133 0.133 0.027 0.132 0.055 0.133 0.069 0.136 0.079
γ1 = 0.086 0.086 0.005 0.086 0.009 0.086 0.016 0.084 0.035
γ2 = −0.003 −0.003 0.037 −0.002 0.052 −0.005 0.083 −0.005 0.153

Note: We perform 1,000 simulations. ’Std’ denotes the standard deviation.
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Table E.2: Full simulation results under missing links with group fixed effects

Proportion of
missing links

0% 25% 50% 75%

Statistic Mean Std Mean Std Mean Std Mean Std

Classical IV: Gy observed and GX unobserved; Instruments: GX2

α = 0.538 0.538 0.009 0.531 0.015 0.523 0.027 0.522 0.067
β1 = −0.072 −0.072 0.009 −0.090 0.011 −0.107 0.016 −0.123 0.035
β2 = 0.133 0.133 0.028 0.136 0.030 0.139 0.032 0.143 0.033
γ1 = 0.086 0.086 0.005 0.063 0.005 0.046 0.006 0.032 0.011
γ2 = −0.003 −0.001 0.038 −0.009 0.039 −0.012 0.042 −0.012 0.052

Classical IV: Gy and GX unobserved; Instruments: GX2

α = 0.538 0.538 0.009 0.432 0.016 0.343 0.025 0.272 0.049
β1 = −0.072 −0.072 0.009 −0.178 0.022 −0.273 0.029 −0.353 0.033
β2 = 0.133 0.133 0.028 0.149 0.058 0.165 0.074 0.182 0.081
γ1 = 0.086 0.086 0.005 0.033 0.009 0.000 0.013 −0.019 0.024
γ2 = −0.003 −0.001 0.038 −0.028 0.051 −0.044 0.061 −0.045 0.081

SGMM: Gy and GX observed; T = 100

α = 0.538 0.538 0.009 0.537 0.013 0.538 0.017 0.536 0.027
β1 = −0.072 −0.072 0.009 −0.073 0.009 −0.072 0.010 −0.073 0.011
β2 = 0.133 0.133 0.028 0.133 0.027 0.133 0.027 0.133 0.027
γ1 = 0.086 0.086 0.005 0.086 0.006 0.086 0.008 0.087 0.012
γ2 = −0.003 −0.001 0.038 −0.002 0.039 −0.004 0.041 −0.002 0.040

SGMM: Gy observed and GX unobserved; S = T = 100

α = 0.538 0.538 0.009 0.537 0.013 0.538 0.022 0.539 0.042
β1 = −0.072 −0.072 0.009 −0.073 0.010 −0.072 0.012 −0.072 0.016
β2 = 0.133 0.133 0.028 0.133 0.030 0.133 0.032 0.133 0.032
γ1 = 0.086 0.086 0.005 0.086 0.007 0.086 0.011 0.085 0.019
γ2 = −0.003 −0.001 0.038 −0.003 0.046 −0.004 0.059 0.002 0.085

SGMM: Gy unobserved and GX observed; S = T = 100

α = 0.538 0.538 0.009 0.537 0.018 0.538 0.031 0.542 0.076
β1 = −0.072 −0.072 0.009 −0.074 0.017 −0.075 0.022 −0.073 0.031
β2 = 0.133 0.133 0.028 0.133 0.047 0.133 0.059 0.136 0.066
γ1 = 0.086 0.086 0.005 0.085 0.010 0.084 0.016 0.081 0.036
γ2 = −0.003 −0.001 0.038 −0.003 0.057 −0.007 0.082 0.001 0.140

SGMM: Gy and GX unobserved; R = S = T = 100

α = 0.538 0.538 0.009 0.537 0.018 0.538 0.033 0.539 0.084
β1 = −0.072 −0.072 0.009 −0.074 0.020 −0.075 0.027 −0.074 0.037
β2 = 0.133 0.133 0.028 0.133 0.055 0.133 0.071 0.137 0.078
γ1 = 0.086 0.086 0.005 0.085 0.011 0.084 0.017 0.082 0.039
γ2 = −0.003 −0.001 0.038 −0.003 0.060 −0.007 0.087 0.003 0.153

Note: We perform 1,000 simulations. ’Std’ denotes the standard deviation.
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Table E.3: Full simulation results under misclassified links without group fixed effects

False pos. rate 0% 0% 15% 15%
False neg. rate 15% 30% 0% 15%
Statistic Mean Std Mean Std Mean Std Mean Std

Classical IV: Gy observed and GX unobserved; Instruments: GX2

α = 0.538 0.534 0.011 0.529 0.015 0.611 0.112 0.612 0.143
c = 3.806 4.154 0.151 4.489 0.190 3.904 1.534 3.981 2.186
β1 = −0.072 −0.082 0.010 −0.093 0.012 −0.087 0.068 −0.083 0.097
β2 = 0.133 0.134 0.028 0.138 0.029 0.136 0.033 0.136 0.036
γ1 = 0.086 0.072 0.005 0.060 0.005 0.044 0.020 0.032 0.023
γ2 = −0.003 −0.008 0.038 −0.011 0.038 −0.010 0.075 −0.009 0.080

Classical IV: Gy and GX unobserved; Instruments: GX2

α = 0.538 0.479 0.012 0.424 0.015 0.366 0.168 0.275 0.171
c = 3.806 5.538 0.276 7.100 0.359 8.870 1.563 9.876 1.502
β1 = −0.072 −0.135 0.018 −0.196 0.024 −0.421 0.034 −0.425 0.036
β2 = 0.133 0.143 0.048 0.158 0.060 0.191 0.087 0.191 0.088
γ1 = 0.086 0.049 0.007 0.022 0.009 0.064 0.049 0.036 0.050
γ2 = −0.003 −0.022 0.043 −0.035 0.048 0.022 0.194 0.026 0.197

SGMM: Gy and GX observed; T = 100

α = 0.538 0.537 0.011 0.538 0.013 0.538 0.020 0.537 0.023
c = 3.806 3.809 0.133 3.808 0.139 3.802 0.151 3.814 0.156
β1 = −0.072 −0.073 0.009 −0.072 0.010 −0.072 0.010 −0.073 0.011
β2 = 0.133 0.132 0.027 0.133 0.026 0.132 0.027 0.133 0.025
γ1 = 0.086 0.086 0.006 0.086 0.006 0.086 0.009 0.086 0.010
γ2 = −0.003 −0.003 0.037 −0.004 0.037 −0.003 0.038 −0.004 0.038

SGMM: Gy observed and GX unobserved; S = T = 100

α = 0.538 0.538 0.011 0.537 0.014 0.539 0.037 0.540 0.047
c = 3.806 3.806 0.145 3.806 0.165 3.805 0.243 3.805 0.273
β1 = −0.072 −0.072 0.010 −0.072 0.011 −0.072 0.015 −0.072 0.017
β2 = 0.133 0.132 0.029 0.134 0.029 0.133 0.034 0.133 0.034
γ1 = 0.086 0.086 0.006 0.087 0.007 0.085 0.018 0.086 0.023
γ2 = −0.003 −0.004 0.042 −0.004 0.046 −0.006 0.086 −0.007 0.105

SGMM: Gy unobserved and GX observed; S = T = 100

α = 0.538 0.538 0.012 0.537 0.018 0.539 0.077 0.536 0.103
c = 3.806 3.803 0.232 3.799 0.292 3.812 0.501 3.812 0.622
β1 = −0.072 −0.072 0.015 −0.072 0.018 −0.072 0.032 −0.073 0.038
β2 = 0.133 0.132 0.041 0.135 0.048 0.135 0.067 0.134 0.070
γ1 = 0.086 0.086 0.007 0.087 0.010 0.085 0.039 0.088 0.050
γ2 = −0.003 −0.005 0.047 −0.004 0.055 −0.005 0.170 −0.010 0.209

SGMM: Gy and GX unobserved; R = S = T = 100

α = 0.538 0.538 0.013 0.537 0.018 0.543 0.090 0.539 0.124
c = 3.806 3.800 0.273 3.794 0.350 3.802 0.596 3.792 0.753
β1 = −0.072 −0.072 0.017 −0.072 0.022 −0.071 0.038 −0.072 0.047
β2 = 0.133 0.132 0.048 0.135 0.058 0.135 0.081 0.134 0.085
γ1 = 0.086 0.086 0.008 0.087 0.010 0.083 0.045 0.087 0.061
γ2 = −0.003 −0.005 0.047 −0.004 0.057 −0.008 0.205 −0.014 0.251

Note: We perform 1,000 simulations. ’Std’ denotes the standard deviation.
‘False pos. rate‘ refers to the proportion of false positives among actual nega-
tives, which include true negatives and false positives. ‘False neg. rate‘ refers
to the proportion of false negatives among actual positives, which include true
positives and false negatives. A positive indicates a friendship, while a negative
indicates a non-friendship.
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Table E.4: Full simulation results under misclassified links with group fixed effects

False pos. rate 0% 0% 15% 15%
False neg. rate 15% 30% 0% 15%
Statistic Mean Std Mean Std Mean Std Mean Std

Classical IV: Gy observed and GX unobserved; Instruments: GX2

α = 0.538 0.532 0.020 0.525 0.026 0.655 0.172 0.645 0.217
β1 = −0.072 −0.082 0.010 −0.092 0.011 −0.093 0.054 −0.097 0.131
β2 = 0.133 0.135 0.028 0.138 0.029 0.138 0.033 0.135 0.036
γ1 = 0.086 0.072 0.004 0.059 0.005 0.042 0.018 0.033 0.023
γ2 = −0.003 −0.007 0.039 −0.010 0.039 −0.009 0.083 −0.006 0.095

Classical IV: Gy and GX unobserved; Instruments: GX2

α = 0.538 0.472 0.019 0.412 0.024 0.380 0.156 0.289 0.165
β1 = −0.072 −0.111 0.013 −0.147 0.016 −0.280 0.023 −0.282 0.025
β2 = 0.133 0.140 0.037 0.148 0.043 0.173 0.058 0.170 0.061
γ1 = 0.086 0.061 0.006 0.041 0.006 0.064 0.030 0.045 0.033
γ2 = −0.003 −0.015 0.042 −0.021 0.045 0.011 0.145 0.009 0.146

SGMM: Gy and GX observed; T = 100

α = 0.538 0.538 0.019 0.537 0.023 0.535 0.042 0.539 0.051
β1 = −0.072 −0.072 0.010 −0.072 0.010 −0.072 0.011 −0.072 0.011
β2 = 0.133 0.133 0.026 0.133 0.027 0.133 0.026 0.131 0.027
γ1 = 0.086 0.086 0.005 0.086 0.006 0.087 0.010 0.086 0.011
γ2 = −0.003 −0.004 0.039 −0.003 0.039 −0.001 0.039 −0.005 0.040

SGMM: Gy observed and GX unobserved; S = T = 100

α = 0.538 0.538 0.019 0.537 0.024 0.533 0.075 0.532 0.109
β1 = −0.072 −0.072 0.010 −0.072 0.011 −0.073 0.016 −0.073 0.019
β2 = 0.133 0.133 0.028 0.134 0.029 0.134 0.033 0.131 0.035
γ1 = 0.086 0.086 0.005 0.086 0.006 0.087 0.018 0.088 0.026
γ2 = −0.003 −0.004 0.044 −0.004 0.048 −0.002 0.100 0.001 0.115

SGMM: Gy unobserved and GX observed; S = T = 100

α = 0.538 0.538 0.020 0.536 0.027 0.544 0.105 0.552 0.142
β1 = −0.072 −0.072 0.011 −0.072 0.013 −0.072 0.022 −0.071 0.026
β2 = 0.133 0.133 0.031 0.134 0.035 0.134 0.043 0.131 0.046
γ1 = 0.086 0.086 0.006 0.086 0.007 0.084 0.025 0.083 0.034
γ2 = −0.003 −0.005 0.046 −0.003 0.052 −0.002 0.132 −0.003 0.157

SGMM: Gy and GX unobserved; R = S = T = 100

α = 0.538 0.538 0.021 0.536 0.028 0.540 0.126 0.537 0.178
β1 = −0.072 −0.072 0.013 −0.072 0.015 −0.072 0.027 −0.073 0.033
β2 = 0.133 0.133 0.036 0.134 0.042 0.135 0.055 0.131 0.059
γ1 = 0.086 0.086 0.006 0.086 0.008 0.085 0.030 0.087 0.042
γ2 = −0.003 −0.004 0.047 −0.003 0.054 −0.003 0.164 −0.002 0.198

Note: We perform 1,000 simulations. ’Std’ denotes the standard deviation.
‘False pos. rate‘ refers to the proportion of false positives among actual nega-
tives, which include true negatives and false positives. ‘False neg. rate‘ refers
to the proportion of false negatives among actual positives, which include true
positives and false negatives. A positive indicates a friendship, while a negative
indicates a non-friendship.
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F Bayesian estimator

F.1 Posterior Distributions for Algorithm 1.

To compute the posterior distributions, we set prior distributions on α̃, Λ, and σ2, where

α̃ = log(
α

1− α
) and Λ = [β,γ]. In Algorithm 1, we therefore sample α̃ and compute α, such

that α =
exp(α̃)

1 + exp(α̃)
. Using this functional form for computing α ensures that α ∈ (0, 1).

The prior distributions are set as follows:

α̃ ∼ N (µα̃, σ
2
α̃),

Λ|σ2 ∼ N (µΛ, σ
2ΣΛ),

σ2 ∼ IG(
a

2
,
b

2
).

For the simulations and estimations in this paper, we set µα̃ = −1, σ−2
α̃ = 2, µΛ = 0,

ΣΛ
−1 =

1

100
IK , a = 4, and b = 4, where IK is the identity matrix of dimension K and

K = dim(Λ).

Following Algorithm 1, α is updated at each iteration t of the MCMC by drawing α̃∗ from

the proposal N (α̃t−1, ξt), where the jumping scale ξt is also updated at each t following

Atchadé and Rosenthal (2005) for an acceptance rate of a∗ targeted at 0.44. As the proposal

is symmetrical, α∗ =
exp(α̃∗)

1 + exp(α̃∗)
is accepted with the probability

min

{
1,

P(y|At,Λt−1, α
∗)P (α̃∗)

P(y|At,θt−1)P (α̃t)

}
.
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The parameters Λt = [βt, γt] and σ2
t are drawn from their posterior conditional distributions,

given as follows:

Λt|y,At, αt, σ
2
t−1 ∼ N (µ̂Λt

, σ2
t−1Σ̂Λt),

σ2
t |y,At,θt ∼ IG

(
ât
2
,
b̂t
2

)
,

where,

Σ̂
−1

Λt
= V′

tVt +Σ−1
Λ ,

µ̂Λt
= Σ̂Λt

(
V′
t(y − αtGty) +Σ−1

Λ µΛ

)
,

ât = a+N,

b̂t = b+ (Λt − µΛ)
′Σ−1

Λ (Λt − µΛ) + (y − αtGty −VtΛt)
′(y − αtGty −VtΛt),

Vt = [1, X, GtX].

F.2 Network Sampling

This section explains how we sample the network in Algorithm 1 using Gibbs sampling. As

discussed above, a natural solution is to update only one entry of the adjacency matrix at

every step t of the MCMC. The entry (i, j) is updated according to its conditional posterior

distribution. For each entry, however, we need to compute P(y|0,A−ij) and P(y|1,A−ij),

which are the respective likelihoods of replacing aij by 0 or by 1. The likelihood computation

requires the determinant of (I−αG), which has a complexity O(N3) where N is the dimension

of G. This implies that we must compute 2N(N − 1) times det(I − αG) to update the

adjacency matrix at each step of the MCMC. As G is row-normalized, alternating any off-

diagonal entry (i, j) in A between 0 and 1 perturbs all off-diagonal entries of the row i in
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(I− αG). We show that Aij and det(I− αG) can be updated by computing a determinant

of an auxiliary matrix that requires only updating two entries.

Assume that we want to update the entry (i, j). Let h be the function defined in N

such that ∀ x ∈ N∗, h(x) = x, and h(0) = 1. Let L be an N × N diagonal matrix, where

Lii = h(ni), and ni stands for the degree of i, while Lkk = 1 for all k ̸= i, and W is the

matrix G where the row i of W is replaced by the row i of A. Then, as the determinant is

linear in each row, we can obtain I−αG by dividing the row i of L−αW by h(ni). We get:

det(I− αG) =
1

h(ni)
det(L− αW).

When aij changes (from 0 to 1, or 1 to 0), note that only the entries (i, i) and (i, j) change

in L− αW. Two cases can be distinguished.

• If aij = 0 before the update, then the new degree of i will be ni + 1. Thus, the entry

(i, i) in L− αW will change from h(ni) to h(ni + 1) (as the diagonal of W equals 0),

and the entry (i, j) will change from 0 to −α. The new determinant is therefore given

by

det(I− αG∗) =
1

h(ni + 1)
det(L∗ − αW∗),

where G∗, L∗, and αW∗ are the new matrices once aij has been updated.

• If aij = 1 before the update, then the new degree of k will be ni − 1. Thus, the entry

(i, i) in L − αW will change from h(ni) to h(ni − 1), and the entry (i, j) will change

from −α to 0. The new determinant is therefore given by

det(I− αG∗) =
1

h(ni − 1)
det(L∗ − αW∗).

Then, to update det(L − αW) when only the entries (i, i) and (i, j) change, we adapt the
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Lemma 1 in Hsieh et al. (2019) as follows:

Proposition 3. Let ei be the i’th unit basis vector in RN . Let M denote an N × N matrix

and Bij(Q, ϵ) an N × N matrix as a function of an N × N matrix Q and a real value ϵ,

such that

Bij(Q, ϵ) =
Qeie

′
jQ

1 + ϵe′jQei
. (17)

Adding a perturbation ϵ1 in the (i, i)th position and a perturbation ϵ2 in the (i, j)th position

to the matrix M can be written as M̃ = M+ ϵ1eie
′
i + ϵ2eie

′
j.

1. The inverse of the perturbed matrix can be written as

M̃−1 = M−1 − ϵ1Bii(M
−1, ϵ1)− ϵ2Bij

(
M−1 − ϵ1Bii(M

−1, ϵ1), ϵ2
)
.

2. The determinant of the perturbed matrix can be written as

det
(
M̃
)
=
(
1 + ϵ2e

′
j

(
M−1 − ϵ1Bii(M

−1, ϵ1)ei
))

(1 + ϵ1e
′
iM

−1ei)det (M) .

Proof. 1. By the Sherman–Morrison formula (Mele, 2017), we have

(
M+ ϵeie

′
j

)−1
= M−1 − ϵ

M−1eie
′
jM

−1

1 + ϵe′jM
−1ei

= M−1 − ϵBij(M, ϵ).

Thus,

M̃−1 =
(
(M+ ϵ1eie

′
i) + ϵ2eie

′
j

)−1
,

M̃−1 = (M+ ϵ1eie
′
i)
−1 − ϵ2Bij((M+ ϵ1eie

′
i)
−1, ϵ2),

M̃−1 = M−1 − ϵ1Bii(M
−1, ϵ1)− ϵ2Bij

(
M−1 − ϵ1Bii(M

−1, ϵ1), ϵ2
)
.

2. By the matrix determinant lemma (Johnson and Horn, 1985), we have

det
(
M+ ϵeie

′
j

)
= (1 + ϵe′jM

−1ei)det (M) .
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It follows that

det
(
M̃
)

= det
(
(M+ ϵ1eie

′
i) + ϵ2eie

′
j

)
,

det
(
M̃
)

= (1 + ϵ2e
′
j(M+ ϵ1eie

′
i)
−1ei)det (M+ ϵ1eie

′
i) ,

det
(
M̃
)

=
(
1 + ϵ2e

′
j

(
M−1 − ϵ1Bii(M

−1, ϵ1)ei
))

(1 + ϵ1e
′
iM

−1ei)det (M) .

The method proposed above becomes computationally intensive when many entries must be

updated simultaneously. We also propose an alternative method that allows updating the

block for entries in A. Let D = (I− αG); we can write

det(D) =
N∑
j=1

(−1)i+jDijδij, (18)

where i denotes any row of D and δij is the minor40 associated with the entry (i, j). The

minors of row i do not depend on the values of entries in row i. To update any block in row

i, we therefore compute the N minors associated with i and use this minor within the row.

We can then update many entries simultaneously without increasing the number of times

that we compute det(D).

One possibility is to update multiple links simultaneously by randomly choosing the number

of entries to consider and their position in the row. As suggested by Chib and Ramamurthy

(2010), this method would help the Gibbs sampling to converge more quickly. We can

summarize how we update the row i as follows:

1. Compute the N minors δi1, . . . , δin .

2. Let ΩG be the entries to update in the row i, and nG = |ΩG| the number of entries in
40The determinant of the submatrix of M by removing row i and column j.
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ΩG.

(a) Choose r, the size of the block to update, as a random integer number such that

1 ≤ r ≤ nG. In practice, we choose r ≤ min(5, nG) because the number of

possibilities of links to consider grows exponentially with r.

(b) Choose the r random entries from ΩG. These entries define the block to update.

(c) Compute the posterior probabilities of all possibilities of links inside the block

and update the block (there are 2r possibilities). Use the minors calculated at 1

and the formula (18) to quickly compute det(D).

(d) Remove the r drawn positions from ΩG and let nG = nG − r. Replicate 2a, 2b,

and 2c until nG = 0.

F.3 How to build prior distributions

The two following examples discuss how to construct prior distributions depending on

whether the first stage is estimated by a classical or Bayesian estimator.

Example 4 (Priors from the Asymptotic Distribution of ρ). In a classical setting, and under

the usual assumptions, the estimation of (2) produces an estimator ρ̂ of ρ0 and an estimator

of the asymptotic variance of ρ̂, i.e., V̂(ρ̂). In this case, we define the prior density π(ρ)

as the density of a multivariate normal distribution with mean ρ̂ and variance–covariance

matrix V̂(ρ̂).

Example 5 (Priors from the Posterior Distribution of ρ). In a Bayesian setting, the es-

timation of ρ from the network formation model (2) results in draws from the posterior
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distribution of ρ. It is therefore natural to use such a posterior distribution as the prior

distribution of A for the estimation based on (5). Performing such a sequential Bayesian

updating approach comes with a well-known numerical issue.41

Indeed, the evaluation of the acceptance ratio in Step 1 of Algorithm 1 below requires

the evaluation of the density of ρ at different values. Ideally, one would use the draws from

the posterior distribution of ρ from the first step (network formation model) and perform

a nonparametric kernel density estimation of the posterior distribution. However, when the

dimension of ρ is large, the kernel density estimation may be infeasible in practice.

This is especially true for very flexible network formation models, such as that proposed

by Breza et al. (2020) for which the number of parameters to estimate is O(Nm). In such a

case, it might be more reasonable to use a more parametric approach or to impose additional

restrictions on the dependence structure of ρ across dimensions.42

41See Thijssen and Wessels (2020) for a recent discussion.
42For example, if we assume that the posterior distribution of ρ is jointly normal, the estimation of the

mean and variance-covariance matrix is straightforward, even in a high-dimensional setting. Simulations
suggest that this approach performs well in practice. See the Vignette accompanying our R package.
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G Application

G.1 Error codes only

Each student nominates their best friends up to 5 males and 5 females. Because we know

the sex of nominated friends, even when the identifier is coded with errors, we associate each

missing link to a male or female student. We then have two sets of network data for each

student i: the set of data from i to their male schoolmates and the set of data from i to

their female schoolmates. A set is considered fully observed if it has no missing values. We

estimate the network formation only using the fully observed sets. The sets with partial or

no observed data are inferred (even the data we do not doubt in those sets are inferred).

This approach raises a selection problem that we address by weighting each selected set,

following Manski and Lerman (1977). The intuition of the weights lies in the fact that the

sets with many links have lower probabilities to be selected (because error codes are more

likely). The weight is the inverse of the selection probability. For a selected set Sis (of

network data from i to schoolmates of sex s), the selection probability can be estimated as

the proportion of sets without missing data among the sets of network data to schoolmates

of sex s having the same number of links than Sis.

For the Bayesian estimator, we jointly estimate the peer effect model and the network

formation model (i.e., using Step 1’ on Page 28). Thus, in the MCMC, ρ and the sets with

partial or no network data are inferred using information from the weighted sets and the

peer effect model.
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G.2 Error codes and top coding

We consider the same selected sets as in the case of missing data only. However, we doubt the

exactitude of a link aij ∈ Sis if aij = 0 and the number of links in Sis is five. Therefore, if the

number of links in Sis is five, we adjust the weight associated with each aij. For aij = 0, we

multiply the weight obtained in the case of missing data only by (|Sis|−ℓ(Sis))/(|Sis|−ℓ̂(Sis)),

and for aij = 1, we multiply the weight by ℓ(Sis)/ℓ̂(Sis), where ℓ(Sis) is the estimate of the

true number of links from i to their schoolmates of sex s, ℓ̂(Sis) if the number of links declared

in Sis, and |Sis| is the number of data in Sis (number of students having the sex s in the

school minus one).

We denote s = m for males and s = f for females. Fours scenarios are possible: {ℓ̂(Sim) <

5, ℓ̂(Sif ) < 5}, {ℓ̂(Sim) = 5, ℓ̂(Sif ) < 5}, {ℓ̂(Sim) < 5, ℓ̂(Sif ) = 5}, and {ℓ̂(Sim) =

5, ℓ̂(Sif ) = 5}. In the last three cases, ℓ(Sim) + ℓ(Sif ) is left-censored and we know the

lower bound. Assuming that the number of links i follows a Poisson distribution of mean

nei , we estimate nei using a censored Poisson regression on the declared number of links. We

assume that nei is an exponential linear function of i’s characteristics (age, sex, ...), and we

also include school-fixed effects to control for school size.

The estimate of nei is ℓ(Sim) + ℓ(Sif ), and it allows us to compute ℓ(Sim) and ℓ(Sif ). For

the case {ℓ̂(Sim) = 5, ℓ̂(Sif ) = 5}, we assume that ℓ(Sim) = ℓ(Sif ) = 0.5(ℓ(Sim) + ℓ(Sif )).

In the other cases, as either ℓ(Sim) or ℓ(Sif ) is known, the second member of ℓ(Sim)+ ℓ(Sif )

can be computed.

For the Bayesian estimator, and contrary to the case with error codes only, it is more

challenging to jointly estimate the peer effect model and the network formation model in a
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single step. We therefore first estimate the network formation model and then the Bayesian

estimator (i.e., using Step 1 in Algorithm 1). Thus, for the MCMC, the estimated distribution

of ρ from the network formation model is used as a prior distribution. We then infer ρ and

the network data aij = 0 that we are doubtful about, using information from the peer effect

model and the prior distribution of ρ.

G.3 Tables

Table G.1: Summary statistics

Statistic Mean Std. Dev. Pctl(25) Pctl(75)

Female 0.540 0.498 0 1
Hispanic 0.157 0.364 0 0
Race

White 0.612 0.487 0 1
Black 0.246 0.431 0 0
Asian 0.022 0.147 0 0
Other 0.088 0.283 0 0

Mother’s education
High 0.310 0.462 0 1
<High 0.193 0.395 0 0
>High 0.358 0.480 0 1
Missing 0.139 0.346 0 0

Mother’s job
Stay-at-home 0.225 0.417 0 0
Professional 0.175 0.380 0 0
Other 0.401 0.490 0 1
Missing 0.199 0.399 0 0

Age 13.620 1.526 13 14
GPA 2.912 0.794 2.333 3.5
Note: We only keep the 33 schools having less than 200 students from the In-
School sample. The variable GPA is computed by taking the average grade
for English, Mathematics, History, and Science, letting A = 4, B = 3, C = 2,
and D = 1. Thus, higher scores indicate better academic achievement.
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Table G.2: Empirical results (Bayesian method)

Model 1 Model 2 Model 3
Statistic Mean Std Mean Std Mean Std

Peer effect model
Peer effects 0.350 0.024 0.524 0.036 0.538 0.037
Own effects
Female 0.144 0.029 0.135 0.030 0.133 0.031
Hispanic −0.083 0.042 −0.148 0.048 −0.151 0.047
Race (White)

Black −0.230 0.045 −0.190 0.055 −0.189 0.055
Asian −0.091 0.089 −0.113 0.091 −0.110 0.091
Other 0.055 0.051 0.039 0.052 0.039 0.052

Mother’s education (High)
<High −0.122 0.039 −0.138 0.040 −0.139 0.040
>High 0.140 0.034 0.123 0.034 0.121 0.034
Missing −0.060 0.050 −0.069 0.051 −0.070 0.051

Mother’s job (Stay-at-home)
Professional 0.080 0.045 0.075 0.044 0.079 0.044
Other 0.003 0.035 −0.014 0.035 −0.012 0.035
Missing −0.066 0.047 −0.074 0.048 −0.073 0.048

Age −0.073 0.010 −0.071 0.010 −0.072 0.010
Contextual effects
Female 0.011 0.049 −0.003 0.060 −0.003 0.060
Hispanic 0.060 0.069 0.272 0.102 0.276 0.105
Race (White)

Black 0.050 0.058 0.025 0.073 0.033 0.074
Asian 0.209 0.186 0.110 0.365 0.209 0.385
Other −0.137 0.089 −0.044 0.163 −0.051 0.167

Mother’s education (High)
<High −0.269 0.070 −0.228 0.141 −0.221 0.149
>High 0.072 0.059 0.063 0.097 0.057 0.102
Missing −0.077 0.093 0.107 0.167 0.124 0.174

Mother’s job (Stay-at-home)
Professional −0.110 0.08) 0.102 0.124 0.090 0.134
Other −0.101 0.060 −0.003 0.100 −0.017 0.103
Missing −0.093 0.085 −0.075 0.157 −0.109 0.165

Age 0.066 0.006 0.083 0.008 0.086 0.009

SE2 0.523 0.496 0.499

Network formation model
Same sex 0.310 0.011 0.370 0.014
Both Hispanic 0.416 0.020 0.436 0.026
Both White 0.312 0.018 0.304 0.023
Both Black 1.076 0.030 1.173 0.038
Both Asian 0.164 0.034 0.144 0.043
Mother’s education < High 0.226 0.013 0.218 0.017
Mother’s education > High 0.007 0.012 0.005 0.014
Mother’s job Professional −0.116 0.012 −0.128 0.016
Age absolute difference −0.700 0.007 −0.714 0.009

Average number of friends 3.251 4.665 5.618

Note: Model 1 considers the observed network as given. Model 2 infers the missing links due to friendship
nominations coded with error, and Model 3 infers the missing links due to friendship nominations coded with
error and controls for top coding. For each model, Column "Mean" indicates the posterior mean, and Column
"Std" indicates the posterior standard deviations in parentheses.
N = 3,126. Observed links = 17,993. Proportion of inferred network data: error code = 60.0%, error code and
top coding = 65.0%. The explained variable is computed by taking the average grade for English, Mathematics,
History, and Science, letting A = 4, B = 3, C = 2, and D = 1. Thus, higher scores indicate better academic
achievement.
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Table G.3: Empirical results (SGMM Method)

Model 1 Model 2 Model 3
Statistic Mean Std Mean Std Mean Std

Peer effect model
Peer effects 0.455 0.230 0.753 0.254 0.683 0.242
Own effects
Female 0.179 0.039 0.122 0.036 0.122 0.035
Hispanic −0.129 0.045 −0.160 0.051 −0.160 0.051
Race (White)

Black −0.276 0.058 −0.172 0.058 −0.166 0.059
Asian −0.178 0.101 −0.131 0.085 −0.124 0.086
Other 0.087 0.062 0.023 0.061 0.023 0.062

Mother’s education (High)
<High −0.134 0.044 −0.121 0.046 −0.124 0.047
>High 0.109 0.036 0.121 0.030 0.122 0.03)
Missing −0.066 0.053 −0.060 0.051 −0.062 0.051

Mother’s job (Stay-at-home)
Professional 0.145 0.055 0.065 0.043 0.071 0.043
Other 0.043 0.035 −0.019 0.031 −0.018 0.030
Missing −0.018 0.045 −0.072 0.043 −0.068 0.043

Age −0.042 0.032 −0.072 0.015 −0.068 0.016
Contextual effects
Female −0.056 0.074 −0.014 0.068 −0.001 0.068
Hispanic 0.265 0.121 0.331 0.169 0.368 0.175
Race (White)

Black 0.129 0.125 0.035 0.113 0.013 0.108
Asian 2.409 1.220 3.236 2.359 3.466 2.575
Other −0.363 0.180 −0.111 0.170 −0.195 0.198

Mother’s education (High)
<High −0.215 0.083 −0.206 0.337 −0.283 0.355
>High 0.168 0.113 −0.043 0.139 −0.051 0.155
Missing 0.240 0.165 −0.041 0.280 −0.034 0.303

Mother’s job (Stay-at-home)
Professional −0.239 0.111 0.182 0.142 0.186 0.158
Other −0.101 0.072 0.126 0.183 0.103 0.198
Missing −0.199 0.162 0.247 0.381 0.168 0.396

Age 0.075 0.033 0.110 0.030 0.103 0.029

Network formation model
Same sex 0.309 0.016 0.370 0.015
Both Hispanic 0.417 0.027 0.433 0.025
Both White 0.312 0.025 0.304 0.023
Both Black 1.077 0.043 1.171 0.041
Both Asian 0.165 0.050 0.142 0.047
Mother’s education < High 0.226 0.018 0.216 0.017
Mother’s education > High 0.009 0.016 0.006 0.015
Mother’s job Professional −0.116 0.017 −0.128 0.016
Age absolute difference −0.701 0.010 −0.715 0.009

Average number of friends 3.251 4.664 5.613

Note: Model 4 considers the observed network as given. Model 5 infers the missing links due to friendship
nominations coded with error, and Model 6 infers the missing links due to friendship nominations coded
with error and controls for top coding. For each model, Column "Mean" indicates the estimates, and
Column "Std" indicates the posterior standard deviations in parentheses.
N = 3,126. Observed links = 17,993. Proportion of inferred network data: error code = 60.0%, error code
and top coding = 65.0%. The explained variable is computed by taking the average grade for English,
Mathematics, History, and Science, letting A = 4, B = 3, C = 2, and D = 1. Thus, higher scores indicate
better academic achievement.
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Table G.4: Empirical results (Standard IV estimator based on the sample of students without
missing network data)

Statistic Mean Std

Peer effects 0.408 (0.243)
Own effect
Female 0.178 (0.075)
Hispanic −0.068 (0.099)
Race (white)

Black −0.170 (0.084)
Asian −0.239 (0.212)
Other 0.101 (0.131)

Mother’s education (High)
<high −0.041 (0.104)
>high 0.230 (0.089)
missing 0.171 (0.122)

Mother’s job (Stay-at-home)
Professional 0.060 (0.121)
Other −0.098 (0.092)
missing −0.116 (0.116)

Age −0.011 (0.028)
Contextual effects
Female −0.063 (0.153)
Hispanic 0.421 (0.246)
Race (white)

Black 0.010 (0.169)
Asian −0.242 (0.909)
Other −0.204 (0.304)

Mother’s education (High)
<high −0.292 (0.257)
>high −0.076 (0.196)
missing 0.077 (0.295)

Mother’s job (Stay-at-home)
Professional 0.168 (0.247)
Other −0.141 (0.191)
missing −0.126 (0.283)

Age −0.065 (0.05)

Note: These results are based on the standard IV estimation con-
sidering the sample of students without missing network data and
who are not affected by the censoring issue (N = 561). Column
"Mean" indicates the estimates, and Column "Std" indicates the
posterior standard deviations in parentheses. The explained vari-
able is computed by taking the average grade for English, Math-
ematics, History, and Science, letting A = 4, B = 3, C = 2, and
D = 1. Thus, higher scores indicate better academic achievement.
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G.4 Key Player

Figure G.1 shows a scatter plot of the vector of centralities in the observed and reconstructed

networks. The figure illustrates the effects of missing network data. First, because the

reconstructed network has more links, centrality is higher on average. This is essentially

the social multiplier effect. Not accounting for missing links leads to an underestimation of

spillover effects. Second, some individuals, in particular those having very few links in the

observed network, are in reality highly central. Therefore, targeting a policy at individuals

having a high centrality in the observed network would be inefficient. In particular, Figure

G.2 shows that even isolated individuals and individuals interacting in isolated pairs in the

observed network (having centralities of 1 and 1.35 respectively) can be, in reality, highly

central. Thus, a policy based on the evaluation of an observed network, coupled with the

associated endogenous peer effect coefficient α, would not only underestimate the social

multiplier but would also target the wrong individuals.
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Figure G.1: Centrality

Note: The centrality vector is given by (I − α̂G)−11. To compute centrality based on the
observed network, we use the observed network G and the α̂ estimated using specification
Obsv.Bayes. To compute centrality based on the reconstructed network, we use α̂ and G
estimated using the specification TopMiss.Bayes. For both centrality vectors, we use the
average vector centrality across 10,000 draws from their respective posterior distributions.
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Figure G.2: Centrality

Note: See note of Figure G.1.
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Figure G.3: MCMC Simulations – Peer Effect Model
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Figure G.4: MCMC Simulations – Network Formation Model
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H Aggregated Relational Data

Example 6 (Aggregated Relational Data – Assumption 5 does not hold). Aggregated rela-

tional data (ARD) are obtained from survey questions such as, “How many friends with trait

‘X’ do you have?” Here, A can be represented by an N ×K matrix of integer values, where

K is the number of traits that individuals were asked about.

Building on McCormick and Zheng (2015), Breza et al. (2020) proposed a novel approach

for the estimation of network formation models using only ARD. They assume:

P (aij,m = 1) =
exp{νi + νj + ζz′izj}

1 + exp{νi + νj + ζz′izj}
. (19)

Here, ρ = [{νi, zi}i, ζ] is not observed by the econometrician. The parameters νi and νj can

be interpreted as i and j’s propensities to create links, irrespective of the identity of the other

individual involved. The other component, ζz′izj, is meant to capture homophily (like attracts

like) on an abstract latent space (e.g., Hoff et al. (2002)). This model differs from the ones

presented in Examples 1–3 in two fundamental ways.

First, ARD does not provide information on any specific links; 43 therefore, one could

disregard the ARD information and define the predicted distribution estimator of the true

network as:

P̂ (aij,m = 1|ρ̂,Xm) =
exp{ν̂i + ν̂j + ζ̂ ẑ′iẑj}

1 + exp{ν̂i + ν̂j + ζ̂ ẑ′iẑj}
,

where ν̂i, ẑi, and ζ̂ are the estimators (e.g., posterior means) of νi, zi, and ζ, respectively.

Second, (and perhaps more importantly) consistent estimation of ρ is only possible as

the group size Nm goes to infinity (Breza et al., 2023), which contradicts our Assumption
43That is, unless ARD includes the degree distribution with some individuals reporting having no links at

all.
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1. Thus, Assumption 5 does not hold. In the online Appendix ??, we show that our SGMM

estimator (see Section 3) still performs well in finite samples for groups of moderate sizes.

In Section 4, we present a Bayesian estimator that allows for inference in finite samples.

This section provides details about ARD simulation and model estimation using a MCMC

method. We simulate the network for a population of 5000 individuals divided into m = 20

groups of n = 250 individuals. Within each group, the probability of a link is

P (aij = 1) ∝ exp{νi + νj + ζz′izj}. (20)

As there is no connection between the groups, the networks are simulated and estimated

independently. We first present how we simulate the data following the model (22).

H.1 ARD Simulation

The parameters are defined as follows: ζ = 1.5, νi ∼ N (−1.25, 0.37), and the zi are

distributed uniformly according to a von Mises–Fisher distribution. We use a hypersphere

of dimension 3. We set the same values for the parameter for the 20 groups. We generate

the probabilities of links in each network following Breza et al. (2020).

P (aij = 1|νi, νj, ζ, zi, zj) =
exp{νi + νj + ζz′izj}

∑N
i=1 di∑

ij exp{νi + νj + ζz′izj}
, (21)

where di is the degree defined by di ≈ Cp(0)

Cp(ζ)
exp (νi)

N∑
i=1

exp(νi), and the function Cp(.)

is the normalization constant in the von Mises–Fisher distribution density function. After

computing the probability of a link for any pair in the population, we sample the entries of

the adjacency matrix using a Bernoulli distribution with probability (21).

To generate the ARD, we require the “traits” (e.g., cities) for each individual. We set
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K = 12 traits on the hypersphere. Their location vk is distributed uniformly according

to the von Mises-Fisher distribution. The individuals having the trait k are assumed to

be generated by a von Mises–Fisher distribution with the location parameter vk and the

intensity parameter ηk ∼ |N (4, 1)|, k = 1, . . . , 12.

We attribute traits to individuals given their spherical coordinates. We first define Nk,

the number of individuals having the trait k:

Nk =

⌊
rk

∑N
i=1 fM(zi|vk, ηk)

maxi fM(zi|vk, ηk)

⌋
,

where ⌊x⌋ represents the greatest integer less than or equal to x, rk is a random number

uniformly distributed over (0.8; 0.95), and fM(zi|vk, ηk) is the von Mises–Fisher distribution

density function evaluated at zi with the location parameter vk and the intensity parameter

ηk.

The intuition behind this definition for Nk is that when many zi are close to vk, many

individuals should have the trait k.

We can finally attribute trait k to individual i by sampling a Bernoulli distribution with

the probability fik given by

fik = Nk
fM(zi|vk, ηk)∑N
i=1 fM(zi|vk, ηk)

.

The probability of having a trait depends on the proximity of the individuals to the trait’s

location on the hypersphere.

H.2 Model Estimation

In practice, we only have the ARD and the traits of each individual. McCormick and Zheng

(2015) propose an MCMC approach to infer the parameters in the model (20).
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However, the spherical coordinates and the degrees in this model are not identified. The

authors solve this issue by fixing some vk and use the fixed positions to rotate the latent

surface back to a common orientation at each iteration of the MCMC using a Procrustes

transformation. In addition, the total size of a subset bk is constrained in the MCMC.

As discussed by McCormick and Zheng (2015), the number of vk and bk to be set as

fixed depends on the dimensions of the hypersphere. In our simulations, v1, v2, . . . , v5 are

set as fixed to rotate back the latent space. When simulating the data, we let v1 = (1, 0, 0),

v2 = (0, 1, 0), and v3 = (0, 0, 1). This ensures that the fixed positions on the hypersphere

are spaced, as suggested by the authors, to use as much of the space as possible, maximizing

the distance between the estimated positions. We also constrain b3 to its true value. The

results do not change when we constrain a larger set of bk

Following Breza et al. (2020), we estimate the link probabilities using the parameters’

posterior distributions. The gregariousness parameters are computed from the degrees di

and the parameter ζ using the following equation:

νi = log(di)− log
( N∑
i=1

di

)
+

1

2
log
(Cp(ζ)
Cp(0)

)
.

H.3 Finite Sample Performance Using ARD

In this section, we study the small sample performance of the estimator presented in Section

3 when the researcher only has access to ARD (as in Example 6). First, we simulate network

data using the model proposed by Breza et al. (2020) and simulate outcomes using the linear-

in-means model (1) conditional on the simulated networks. Second, we estimate the network

formation model using the Bayesian estimator proposed by Breza et al. (2020) (yielding ρ̂B)
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and using the classical estimator proposed by Alidaee et al. (2020) (yielding ρ̂A). Third,

we estimate the linear-in-means model using the estimators presented in Proposition 2 and

Theorem 1 based on ρ̂A and ρ̂B.

Recall that

P (aij = 1) ∝ exp{νi + νj + ζz′izj}, (22)

where νi, νj, ζ, zi, and zj are not observed by the econometrician but follow parametric

distributions. We refer the interested reader to McCormick and Zheng (2015), Breza et al.

(2020), and Breza et al. (2023) for a formal discussion of the model, including its identification

and consistent estimation.

To study the finite sample performance of our instrumental strategy in this context, we

simulate 20 groups, each having 250 individuals. Within each subpopulation, we simulate

the ARD responses and a series of observable characteristics. The details of the Monte Carlo

simulations can be found below in the Online Appendix H.

Importantly, the model in (22) is based on a single population framework. Thus, the

network formation model must be estimated separately for each of the 20 groups. With only

250 individuals in each group, we therefore expect significant small-sample bias.

We contrast the estimator proposed by Breza et al. (2020) with that of Alidaee et al.

(2020). Whereas Breza et al. (2020) present a parametric Bayesian estimator, Alidaee et al.

(2020) propose a (nonparametric) penalized regression based on a low-rank assumption.

One main advantage of the estimator proposed in Alidaee et al. (2020) is that it allows for

a wider class of model and ensures that the estimation is fast and easily implementable.44

44The authors developed user-friendly packages in R and Python. See Alidaee et al. (2020) for links and
details.
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Note, however, that their method only yields a consistent estimator of P̂ (A) if the true

network is effectively low rank.

Very intuitively, the low-rank assumption implies that linking probabilities were generated

from a small number of parameters. Importantly, the model (22) is not necessarily low rank;

for example, if the individuals’ latent positions (i.e., the zi’s) are uniformly distributed, then

the model may not be low rank and the method proposed by Alidaee et al. (2020) would

perform poorly. If, however, individuals’ latent positions are located around a few focal

points, then the model might be low-rank because knowledge of these focal points may have

high predictive power.

We compare the performance of both estimators as we vary the concentration parameter

(that is, κ; see below in the Online Appendix H for details). This has the effect of changing

the effective rank of the linking probabilities: increasing κ decreases the effective rank.45 We

therefore expect the estimator proposed by Alidaee et al. (2020) to perform better for larger

values of κ.

The results are presented in Tables H.1 and H.2. Table H.1 presents the results for the

special case where GX are observed in the data. The table displays the performance of our

simulated GMM (see Corollary 1) when the network formation model is estimated by Breza

et al. (2020) and Alidaee et al. (2020).

When κ = 0, the network formation is not low rank. This disproportionately affects the

estimator of Alidaee et al. (2020). When κ = 15, the estimators proposed by Breza et al.

(2020) and Alidaee et al. (2020) perform similarly.
45We refer the interested reader to Alidaee et al. (2020) for a formal discussion of the effective rank and

its importance for their estimator.
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We now turn to the more general case where GX are not observed. Table H.2 presents

the performance of our SGMM estimator (Theorem 1) when the network formation process

is estimated using the estimators proposed by Breza et al. (2020) and Alidaee et al. (2020)

and when we assume that the researcher knows the true distribution of the network.

We see that the performance of our estimator is strongly affected by the quality of the

first-stage network formation estimator. When based on either the estimator proposed by

Breza et al. (2020) or Alidaee et al. (2020), for κ = 0 or κ = 15, our SGMM estimator

performs poorly.

The poor performance of our SGMM estimator in a context where both Gy and GX are

unobserved was anticipated. This occurs for two main reasons. First, the consistency of the

network formation estimator in Breza et al. (2023) holds as the size of each subpopulation

goes to infinity, whereas the consistency of our estimator holds as the number of (bounded)

subpopulations goes to infinity. This should affect the performance of our estimator, when

based on estimated network formation models but not when based on the true distribution

of the network.

Second, as discussed in Example 6, ARD provides very little information about the real-

ized network structure in the data (as opposed to censoring issues, for example; see Example

2). Then, if the true distribution is vague in the sense that most predicted probabilities are

away from 0 or 1, we expect the estimation to be imprecise. This is what happens when

κ = 15, where our estimation based on the true distribution of the network is very imprecise

in a context where the network affects the outcome through both Gy and GX.

In the next section, we present a likelihood-based estimator, which uses more information

on the data-generating process of the outcome to improve the precision of the estimation.
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Table H.1: Simulation results with ARD and observed GX

Parameter Breza et al. Alidaee et al.
Mean Std Mean Std

SMM, κ = 0, N = 250, M = 20
α = 0.4 0.392 (0.01) 0.492 (0.057)
β1 = 1 1.001 (0.004) 1.002 (0.009)
β2 = 1.5 1.500 (0.007) 1.496 (0.016)
γ1 = 5 5.013 (0.034) 3.884 (0.295)
γ2 = −3 −2.993 (0.052) −4.048 (0.354)

SMM, κ = 15, N = 250, M = 20
α = 0.4 0.400 (0.009) 0.428 (0.009)
β1 = 1 1.000 (0.004) 0.999 (0.004)
β2 = 1.5 1.500 (0.008) 1.499 (0.008)
γ1 = 5 4.996 (0.034) 4.677 (0.034)
γ2 = −3 −3.005 (0.055) −3.387 (0.055)

Note: In each subnetwork, the spherical coordinates of indi-
viduals are generated from a von Mises–Fisher distribution
with a location parameter (1, 0, 0) and intensity parameter κ.
Predicted probabilities are computed using the mean of the
posterior distribution. We chose the weight associated with
the nuclear norm penalty to minimize the RMSE through
cross-validation. This value of λ = 600 is smaller than the
recommended value in Alidaee et al. (2020). Instruments are
build using only second-degree peers, i.e., G2X.

Table H.2: Simulation results with ARD and unobserved GX

Parameter Breza et al. Alidaee et al. True distribution
Mean Std Mean Std Mean Std

SMM, κ = 0, N = 250, M = 20
α = 0.4 0.717 (0.463) 0.700 (0.268) 0.400 (0.056)
β1 = 1 0.988 (0.022) 0.995 (0.017) 1.000 (0.015)
β2 = 1.5 1.505 (0.03) 1.503 (0.029) 1.501 (0.021)
γ1 = 5 1.778 (4.473) 1.512 (2.37) 4.991 (0.455)
γ2 = −3 −2.205 (1.24) −0.405 (0.955) −3.005 (0.287)

SMM, κ = 15, N = 250, M = 20
α = 0.4 0.603 (0.069) 0.870 (0.202) 0.434 (0.394)
β1 = 1 0.989 (0.014) 0.984 (0.015) 0.998 (0.021)
β2 = 1.5 1.504 (0.029) 1.509 (0.029) 1.501 (0.023)
γ1 = 5 2.866 (0.566) 0.246 (1.973) 4.638 (3.887)
γ2 = −3 −2.458 (0.379) −1.539 (0.602) −2.913 (1.037)

Note: see Table H.1.
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