
Online Appendix

D Additional Simulations

D.1 Finite Sample Performance Using ARD

In this section, we study the small sample performance of the estimator presented in

Section 3 when the researcher only has access to ARD (as in Example 4). First, we

simulate network data using the model proposed by Breza et al. (2020) and simulate

outcomes using the linear-in-means model (1) conditional on the simulated networks.

Second, we estimate the network formation model using the Bayesian estimator pro-

posed by Breza et al. (2020) (yielding ρ̂B) and using the classical estimator proposed

by Alidaee et al. (2020) (yielding ρ̂A). Third, we estimate the linear-in-means model

using the estimators presented in Proposition 2 and Theorem 1 based on ρ̂A and ρ̂B.

Recall that

P (aij = 1) ∝ exp{νi + νj + ζz′
izj}, (10)

where νi, νj, ζ, zi, and zj are not observed by the econometrician but follow parametric

distributions. We refer the interested reader to McCormick and Zheng (2015), Breza

et al. (2020), and Breza et al. (2019) for a formal discussion of the model, including

its identification and consistent estimation.

To study the finite sample performance of our instrumental strategy in this con-

text, we simulate 20 groups, each having 250 individuals. Within each subpopulation,

we simulate the ARD responses and a series of observable characteristics. The details

of the Monte Carlo simulations can be found below in the Online Appendix F.

Importantly, the model in (10) is based on a single population framework. Thus,

the network formation model must be estimated separately for each of the 20 groups.

With only 250 individuals in each group, we therefore expect significant small-sample

bias.
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We contrast the estimator proposed by Breza et al. (2020) with that of Alidaee

et al. (2020). Whereas Breza et al. (2020) present a parametric Bayesian estimator,

Alidaee et al. (2020) propose a (nonparametric) penalized regression based on a low-

rank assumption. One main advantage of the estimator proposed in Alidaee et al.

(2020) is that it allows for a wider class of model and ensures that the estimation

is fast and easily implementable.31 Note, however, that their method only yields a

consistent estimator of P̂ (A) if the true network is effectively low rank.

Very intuitively, the low-rank assumption implies that linking probabilities were

generated from a small number of parameters. Importantly, the model (10) is not

necessarily low rank; for example, if the individuals’ latent positions (i.e. the zi’s)

are uniformly distributed, then the model may not be low rank and the method

proposed by Alidaee et al. (2020) would perform poorly. If, however, individuals’

latent positions are located around a few focal points, then the model might be low-

rank because knowledge of these focal points may have high predictive power.

We compare the performance of both estimators as we vary the concentration

parameter (that is, κ; see below in the Online Appendix F for details). This has the

effect of changing the effective rank of the linking probabilities: increasing κ decreases

the effective rank.32 We therefore expect the estimator proposed by Alidaee et al.

(2020) to perform better for larger values of κ.

A summary of the results is presented in Tables D.1 and D.2. The complete results

can be found in Tables D.3 and D.4. Table D.1 presents the results for the special

case where GX are observed in the data. The table displays the performance of our

simulated GMM (see Corollary 1) when the network formation model is estimated by

Breza et al. (2020) and Alidaee et al. (2020).

When κ = 0, the network formation is not low rank. This disproportionately

affects the estimator of Alidaee et al. (2020). When κ = 15, the estimators proposed
31The authors developed user-friendly packages in R and Python. See Alidaee et al. (2020) for

links and details.
32We refer the interested reader to Alidaee et al. (2020) for a formal discussion of the effective

rank and its importance for their estimator.
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by Breza et al. (2020) and Alidaee et al. (2020) perform similarly.

We now turn to the more general case where GX are not observed. Table D.2

presents the performance of our SGMM estimator (Theorem 1) when the network

formation process is estimated using the estimators proposed by Breza et al. (2020)

and Alidaee et al. (2020) and when we assume that the researcher knows the true

distribution of the network.

We see that the performance of our estimator is strongly affected by the quality

of the first-stage network formation estimator. When based on either the estimator

proposed by Breza et al. (2020) or Alidaee et al. (2020), for κ = 0 or κ = 15, our

SGMM estimator performs poorly.

The poor performance of our SGMM estimator in a context where both Gy and

GX are unobserved was anticipated. This occurs for two main reasons. First, the

consistency of the network formation estimator in Breza et al. (2019) holds as the size

of each subpopulation goes to infinity, whereas the consistency of our estimator holds

as the number of (bounded) subpopulations goes to infinity. This should affect the

performance of our estimator, when based on estimated network formation models

but not when based on the true distribution of the network.

Second, as discussed in Example 4, ARD provides very little information about the

realized network structure in the data (as opposed to censoring issues, for example; see

Example 2). Then, if the true distribution is vague in the sense that most predicted

probabilities are away from 0 or 1, we expect the estimation to be imprecise. This

is what happens when κ = 15, where our estimation based on the true distribution

of the network is very imprecise in a context where the network affects the outcome

through both Gy and GX.

In the next section, we present a likelihood-based estimator, which uses more

information on the data-generating process of the outcome to improve the precision

of the estimation.
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Table D.1: Simulation results with ARD and observed GX

Parameter Breza et al. Alidaee et al.
Mean Std. Dev Mean Std. Dev

κ = 0

SGMM (Corollary 1)
α = 0.4 0.392 (0.010) 0.492 (0.057)

κ = 15

SGMM (Corollary 1)
α = 0.4 0.400 (0.009) 0.428 (0.009)

Note: For each case, we generated 20 independent subnetworks
of 250 individuals each. In each subnetwork, the spherical coor-
dinates of individuals were generated from a von Mises–Fisher
distribution with a location parameter (1, 0, 0) and intensity
parameter κ. Details of the simulation exercise can be found
below in the Online Appendix F. Predicted probabilities were
computed using the mean of the posterior distribution. We
chose the weight associated with the nuclear norm penalty to
minimize the RMSE through cross-validation. This value of
λ = 600 is smaller than the recommended value in Alidaee
et al. (2020). See Table D.3 for the estimated values of the
other parameters.

Table D.2: Simulation results with ARD and unobserved GX (SGMM, Theorem 1)

Parameter Breza et al. Alidaee et al. True distribution
Mean Std. Dev Mean Std. Dev Mean Std. Dev

κ = 0

α = 0.4 0.717 (0.463) 0.700 (0.268) 0.400 (0.056)

κ = 15

α = 0.4 0.603 (0.069) 0.870 (0.202) 0.434 (0.394)

Note: For each case, we generated 20 independent subnetworks of 250 individuals each.
In each subnetwork, the spherical coordinates of individuals were generated from a von
Mises–Fisher distribution with a location parameter (1, 0, 0) and intensity parameter κ.
Details of the simulation exercise can be found below in the Online Appendix F. Pre-
dicted probabilities were computed using the mean of the posterior distribution. See
Table D.4 for the estimated values of the other parameters. Instruments were built us-
ing only second-degree peers, i.e. G2X.
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Table D.3: Simulation results with ARD and observed GX

Parameter Breza et al. Alidaee et al.
Mean Std. Dev Mean Std. Dev

SMM, κ = 0, N = 250, M = 20
α = 0.4 0.392 (0.01) 0.492 (0.057)
β1 = 1 1.001 (0.004) 1.002 (0.009)
β2 = 1.5 1.500 (0.007) 1.496 (0.016)
γ1 = 5 5.013 (0.034) 3.884 (0.295)
γ2 = −3 −2.993 (0.052) −4.048 (0.354)

SMM, κ = 15, N = 250, M = 20
α = 0.4 0.400 (0.009) 0.428 (0.009)
β1 = 1 1.000 (0.004) 0.999 (0.004)
β2 = 1.5 1.500 (0.008) 1.499 (0.008)
γ1 = 5 4.996 (0.034) 4.677 (0.034)
γ2 = −3 −3.005 (0.055) −3.387 (0.055)
Note: In each subnetwork, the spherical coordinates of individuals
are generated from a von Mises–Fisher distribution with a location
parameter (1, 0, 0) and intensity parameter κ. Predicted probabili-
ties are computed using the mean of the posterior distribution. We
chose the weight associated with the nuclear norm penalty to min-
imize the RMSE through cross-validation. This value of λ = 600
is smaller than the recommended value in Alidaee et al. (2020).
Instruments are build using only second-degree peers, i.e. G2X.

Table D.4: Simulation results with ARD and unobserved GX

Parameter Breza et al. Alidaee et al. True distribution
Mean Std. Dev Mean Std. Dev Mean Std. Dev

SMM, κ = 0, N = 250, M = 20
α = 0.4 0.717 (0.463) 0.700 (0.268) 0.400 (0.056)
β1 = 1 0.988 (0.022) 0.995 (0.017) 1.000 (0.015)
β2 = 1.5 1.505 (0.03) 1.503 (0.029) 1.501 (0.021)
γ1 = 5 1.778 (4.473) 1.512 (2.37) 4.991 (0.455)
γ2 = −3 −2.205 (1.24) −0.405 (0.955) −3.005 (0.287)

SMM, κ = 15, N = 250, M = 20
α = 0.4 0.603 (0.069) 0.870 (0.202) 0.434 (0.394)
β1 = 1 0.989 (0.014) 0.984 (0.015) 0.998 (0.021)
β2 = 1.5 1.504 (0.029) 1.509 (0.029) 1.501 (0.023)
γ1 = 5 2.866 (0.566) 0.246 (1.973) 4.638 (3.887)
γ2 = −3 −2.458 (0.379) −1.539 (0.602) −2.913 (1.037)
Note: In each subnetwork, the spherical coordinates of individuals are generated from a von
Mises–Fisher distribution with a location parameter (1, 0, 0) and intensity parameter κ. Pre-
dicted probabilities are computed using the mean of the posterior distribution. We chose
the weight associated with the nuclear norm penalty to minimize the RMSE through cross-
validation. This value of λ = 600 is smaller than the recommended value in Alidaee et al.
(2020). Instruments are build using only second-degree peers, i.e. G2X.
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E Additional Results

E.1 Simple estimators

Proposition 1. [Conditions] Suppose that GX and Gy are observed. Let H be a

matrix such that (1) at least one column of HkX is (strongly) correlated with Gy,

conditional on [1,X,GX] for k ≥ 2, and (2) E[ε|X,H] = 0. Finally, define the

matrix Z = [1,X,GX,H2X,H3X...].

[Results] Then, under classical assumptions (e.g. Cameron and Trivedi (2005),

Proposition 6.1), the (linear) GMM estimator based on the moment function 1

N

∑
i

Z′
kεi

is consistent and asymptotically normally distributed with the usual asymptotic variance–

covariance matrix.

Condition (1) is the relevancy condition, whereas condition (2) is the exogeneity

condition.33 Although Proposition 1 holds for any matrix H such that conditions (1)

and (2) hold, the most sensible example in our context is when H is constructed using

a draw from P̂ (G).

Importantly, the moment conditions remain valid even when the researcher uses

a mispecified estimator of the distribution P (G), as long as the specification error

on P (G) does not induce a correlation with ε.34 This could be of great practical

importance, especially if the estimation of P̂ (G) suffers from a small sample bias.

We present a simple, asymptotically biased, linear GMM estimator. The presen-

tation of such this estimator is useful for two reasons. First, simulations show that

the asymptotic bias turns out to be negligible in many cases, especially for moderate

group sizes. Moreover, the estimator is computationally attractive because the esti-

mator can be written in a closed form. Second, the estimator helps to understand
33Although (for simplicity) in Proposition 1, we use the entire matrix X to generate the instru-

ments HX, in practice, one should avoid including instruments (i.e. columns of HX) that are weakly
correlated with Gy.

34We would like to thank Chih-Sheng Hsieh and Arthur Lewbel for discussions on this important
point.
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the logic underlying the estimator defined in Theorem 1, which we can view as a

bias-corrected version of this simple linear GMM estimator. Proposition 2 formalizes.

Proposition 2. [Conditions] Assume that GX is observed. Let S̈ = [1,X,GX, G̈X, G̈y]

and Ż = [1,X,GX, G̈X, Ġ2X, Ġ3X, ...]. Denote by θ̂ the linear GMM estimator

based on the (pseudo) moment function 1

N

∑
i

Żi[ηi + εi] and define the sensitivity

matrix

MN = [(S̈′Ż/N)W(Ż′S̈/N)]−1(S̈′Ż/N)W.

[Result] Then, under classical assumptions (see proof), the asymptotic bias of

θ̂ is given by αM0 plim[Ż′(G − G̈)y/N ]. Moreover, letting W = I minimizes the

asymptotic bias in the sense of minimizing the Frobenius norm of M.

Although there are no obvious way to obtain a consistent estimate of the asymp-

totic bias (because y is a function of G), simulations show that the bias is very small

in practice.35

The intuition behind Proposition 2 comes from the literature on error-in-variable

models with repeated observations (e.g. Bound et al. (2001)). The instrumental

variable uses two independent draws from the (estimated) distribution of the true

network. One draw is used to proxy the unobserved variable (i.e. Gy), whereas the

other is used to proxy the instrument (i.e. GX). This approach greatly reduces the

bias compared with a situation in which only one draw would be used.36

The argument in Proposition 2 is very similar to the one in Andrews et al. (2017),

although here perturbation with respect to the true model is not local.37 We also

show that we expect W = I to minimize the asymptotic bias. Our result therefore

provides a theoretical justification for the simulations in Onishi and Otsu (2021) who

show that using the identity matrix to weight the moments greatly reduces the bias

in the context studied by Andrews et al. (2017).
35See Section D.1 below.
36Simulations available uppon request.
37See page 1562 in Andrews et al. (2017).
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E.1.1 Proof of Proposition 2

Part 1: Asymptotic bias Define ∆ = G− G̈ and rewrite η = α[G− G̈]y = α∆y.

Let θ+
0 = (θ′

0, 0, 0, . . . , 0)
′ be the true value the parameter when regressors are defined

as S̈ = [1,X,GX, G̈X, G̈y]. The Linear GMM estimator can be written as

θ̂ =
[(

S̈′Ż
N

)(
Ż′S̈
N

)]−1 (
S̈′Ż
N

)(
Ż′S̈
N

θ+
0 + Ż′[η+ε]

N

)
,

θ̂ = θ+
0 + MN

(
Ż′η+Ż′ε

N

)
,

where MN =
[(

S̈′Ż
N

)(
Ż′S̈
N

)]−1 (
S̈′Ż
N

)
.

The asymptotic bias of θ̂ is then given by plimθ∗
N = αM0 plim[Ż′(G − G̈)y/N ].

Part 2: Choice of W Let K = Ż′∆G2/N , if γ = 0, and K = Ż′∆/N otherwise.

Consider ∥MK∥F =
√
trace(K′M′MK) =

√
trace(KK′M′M). We have

(1/N2)MM′ = [S̈′ŻWŻ′S̈]−1S̈′ŻWWŻ′S̈[S̈′ŻWŻ′S̈]−1.

Let W = C′C and let B = S̈′ŻC′. We have

(1/N2)MM′ = (B′B)−1B′CC′B(B′B)−1.

Now, define J′ = (B′B)−1B′C − (B′(C′)−1C−1B)−1B′(C′)−1. We have

(1/N2)MM′ = J′J + (B′(C′)−1C−1B)−1 = J′J + (S̈′ŻŻ′S̈)−1.

Therefore, we have

(1/N2)∥M∥F =

√
trace(J′J + (S̈′ŻŻ′S̈)−1) =

√
trace(J′J) + trace((S̈′ŻŻ′S̈)−1).

When W = I, we have that J = 0 and the Frobenius norm of M is given by

N2

√
trace((S̈′ŻŻ′S̈)−1).
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E.1.2 Bias correction for GX observed

Let us replace V̈ with V in (5). We have

Ż(r)′
i

[
(I − α

...
G

(t)
)i

(
(I − αG)−1 − (I − αG̈(s))−1

)
Vθ̃
]

which is equal to

Ż(r)′
i

[
(I − α

...
G

(t)
)i

(
(I − αG)−1 − (I − αG̈(s))−1

)
((I − αG)y + ε)

]
,

which simplifies to

Ż(r)′
i (I−α

...
G

(t)
)i(I−αG̈(s))−1[α(G−G̈(s))]y+Ż(r)′

i

[
(I − α

...
G

(t)
)i

(
(I − αG)−1 − (I − αG̈(s))−1

)
ε
]
.

Note that the expectation of the term Ż(r)′
i

[
(I − α

...
G

(t)
)i

(
(I − αG)−1 − (I − αG̈(s))−1

)
ε
]

is null.

E.1.3 Corollaries

Corollary 1. Assume that GX is observed but that Gy is not observed. Let Ż(s) =

[1,X,GX, ĠsGX, (Ġ(s))2GX, ...], Z̈(s,t) = [1,X, G̈(t)X, ĠsG̈(t)X, (Ġ(s))2G̈(t)X, ...],

V = [1,X,GX], and V̈(t) = [1,X, G̈(t)X]. Then, the results from Theorem 1 hold

for the following (simulated) moment function:

1

S

S∑
s=1

Ż(s)′
i (I − αĠ(s))iy − 1

ST

T∑
t=1

S∑
s=1

(Ż(s)′V − Z̈(s,t)′V̈(t))iθ̃

− 1

ST

T∑
t=1

S∑
s=1

Z̈(s,t)′
i (I − αĠ(s))i(I − αG̈(t))−1V̈(t)θ̃. (11)

Corollary 2. Assume that Gy is observed but that GX is not observed. Let Ż(s) =

[1,X, Ġ(s)X, (Ġ(s))2X, ...], and V̈(t) = [1,X, G̈(t)X]. Then, the results from Theorem
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1 hold for the following (simulated) moment function:

1

S

S∑
s=1

Ż(s)′
i (I − αG)iy − 1

ST

T∑
t=1

S∑
s=1

Ż(s)′
i V̈(t)

i θ̃ (12)
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F ARD Details

This section provides details about ARD simulation and model estimation using a

MCMC method. We simulate the network for a population of 5000 individuals divided

into m = 20 groups of n = 250 individuals. Within each group, the probability of a

link is

P (aij = 1) ∝ exp{νi + νj + ζz′
izj}. (13)

As there is no connection between the groups, the networks are simulated and esti-

mated independently. We first present how we simulate the data following the model

(10).

F.1 ARD Simulation

The parameters are defined as follows: ζ = 1.5, νi ∼ N (−1.25, 0.37), and the zi

are distributed uniformly according to a von Mises–Fisher distribution. We use a

hypersphere of dimension 3. We set the same values for the parameter for the 20

groups. We generate the probabilities of links in each network following Breza et al.

(2020).

P (aij = 1|νi, νj, ζ, zi, zj) =
exp{νi + νj + ζz′

izj}
∑N

i=1 di∑
ij exp{νi + νj + ζz′

izj}
, (14)

where di is the degree defined by di ≈ Cp(0)

Cp(ζ)
exp (νi)

N∑
i=1

exp(νi), and the function

Cp(.) is the normalization constant in the von Mises–Fisher distribution density func-

tion. After computing the probability of a link for any pair in the population, we

sample the entries of the adjacency matrix using a Bernoulli distribution with prob-

ability (14).

To generate the ARD, we require the “traits” (e.g. cities) for each individual.

We set K = 12 traits on the hypersphere. Their location vk is distributed uniformly

according to the von Mises–Fisher distribution. The individuals having the trait k

are assumed to be generated by a von Mises–Fisher distribution with the location
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parameter vk and the intensity parameter ηk ∼ |N (4, 1)|, k = 1, . . . , 12.

We attribute traits to individuals given their spherical coordinates. We first define

Nk, the number of individuals having the trait k:

Nk =

⌊
rk

∑N
i=1 fM(zi|vk, ηk)

maxi fM(zi|vk, ηk)

⌋
,

where ⌊x⌋ represents the greatest integer less than or equal to x, rk is a random

number uniformly distributed over (0.8; 0.95), and fM(zi|vk, ηk) is the von Mises–

Fisher distribution density function evaluated at zi with the location parameter vk

and the intensity parameter ηk.

The intuition behind this definition for Nk is that when many zi are close to vk,

many individuals should have the trait k.

We can finally attribute trait k to individual i by sampling a Bernoulli distribution

with the probability fik given by

fik = Nk
fM(zi|vk, ηk)∑N
i=1 fM(zi|vk, ηk)

.

The probability of having a trait depends on the proximity of the individuals to the

trait’s location on the hypersphere.

F.2 Model Estimation

In practice, we only have the ARD and the traits for each individual. McCormick

and Zheng (2015) propose a MCMC approach to infer the parameters in the model

(13).

However, the spherical coordinates and the degrees in this model are not identified.

The authors solve this issue by fixing some vk and use the fixed positions to rotate

the latent surface back to a common orientation at each iteration of the MCMC using

a Procrustes transformation. In addition, the total size of a subset bk is constrained
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in the MCMC.

As discussed by McCormick and Zheng (2015), the number of vk and bk to be set

as fixed depends on the dimensions of the hypersphere. In our simulations, v1, v2,

. . . , v5 are set as fixed to rotate back the latent space. When simulating the data,

we let v1 = (1, 0, 0), v2 = (0, 1, 0), and v3 = (0, 0, 1). This ensures that the fixed

positions on the hypersphere are spaced, as suggested by the authors, to use as much

of the space as possible, maximizing the distance between the estimated positions.

We also constrain b3 to its true value. The results do not change when we constrain

a larger set of bk
Following Breza et al. (2020), we estimate the link probabilities using the param-

eters’ posterior distributions. The gregariousness parameters are computed from the

degrees di and the parameter ζ using the following equation:

νi = log(di)− log
( N∑

i=1

di

)
+

1

2
log
(Cp(ζ)

Cp(0)

)
.
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G Bayesian Inference

G.1 Posterior Distributions for Algorithm 1.

To compute the posterior distributions, we set prior distributions on α̃, Λ, and σ2,

where α̃ = log( α

1− α
) and Λ = [β,γ]. In Algorithm 1, we therefore sample α̃ and

compute α, such that α =
exp(α̃)

1 + exp(α̃) . Using this functional form for computing α

ensures that α ∈ (0, 1). The prior distributions are set as follows:

α̃ ∼ N (µα̃, σ
2
α̃),

Λ|σ2 ∼ N (µΛ, σ
2ΣΛ),

σ2 ∼ IG(
a

2
,
b

2
).

For the simulations and estimations in this paper, we set µα̃ = −1, σ−2
α̃ = 2, µΛ = 0,

ΣΛ
−1 =

1

100
IK , a = 4, and b = 4, where IK is the identity matrix of dimension K

and K = dim(Λ).

Following Algorithm 1, α is updated at each iteration t of the MCMC by drawing α̃∗

from the proposal N (α̃t−1, ξt), where the jumping scale ξt is also updated at each t

following Atchadé and Rosenthal (2005) for an acceptance rate of a∗ targeted at 0.44.

As the proposal is symmetrical, α∗ =
exp(α̃∗)

1 + exp(α̃∗)
is accepted with the probability

min
{
1,

P(y|At,Λt−1, α
∗)P (α̃∗)

P(y|At,θt−1)P (α̃t)

}
.

The parameters Λt = [βt, γt] and σ2
t are drawn from their posterior conditional

distributions, given as follows:

Λt|y,At, αt, σ
2
t−1 ∼ N (µ̂Λt

, σ2
t−1Σ̂Λt),

σ2
t |y,At,θt ∼ IG

(
ât
2
,
b̂t
2

)
,
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where,

Σ̂
−1

Λt
= V′

tVt +Σ−1
Λ ,

µ̂Λt
= Σ̂Λt

(
V′

t(y − αtGty) +Σ−1
Λ µΛ

)
,

ât = a+N,

b̂t = b+ (Λt − µΛ)
′Σ−1

Λ (Λt − µΛ) + (y − αtGty − VtΛt)
′(y − αtGty − VtΛt),

Vt = [1, X, GtX].

G.2 Network Sampling

This section explains how we sample the network in Algorithm 1 using Gibbs sam-

pling. As discussed above, a natural solution is to update only one entry of the

adjacency matrix at every step t of the MCMC. The entry (i, j) is updated according

to its conditional posterior distribution. For each entry, however, we need to compute

P(y|0,A−ij) and P(y|1,A−ij), which are the respective likelihoods of replacing aij

by 0 or by 1. The likelihood computation requires the determinant of (I−αG), which

has a complexity O(N3) where N is the dimension of G. This implies that we must

compute 2N(N − 1) times det(I − αG) to update the adjacency matrix at each step

of the MCMC. As G is row-normalized, alternating any off-diagonal entry (i, j) in

A between 0 and 1 perturbs all off-diagonal entries of the row i in (I − αG). We

show that Aij and det(I − αG) can be updated by computing a determinant of an

auxiliary matrix that requires only updating two entries.

Assume that we want to update the entry (i, j). Let h be the function defined in

N such that ∀ x ∈ N∗, h(x) = x, and h(0) = 1. Let L be an N × N diagonal matrix,

where Lii = h(ni), and ni stands for the degree of i, while Lkk = 1 for all k ̸= i, and

W is the matrix G where the row i of W is replaced by the row i of A. Then, as

the determinant is linear in each row, we can obtain I − αG by dividing the row i of
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L − αW by h(ni). We get:

det(I − αG) =
1

h(ni)
det(L − αW).

When aij changes (from 0 to 1, or 1 to 0), note that only the entries (i, i) and (i, j)

change in L − αW. Two cases can be distinguished.

• If aij = 0 before the update, then the new degree of i will be ni + 1. Thus, the

entry (i, i) in L−αW will change from h(ni) to h(ni+1) (as the diagonal of W

equals 0), and the entry (i, j) will change from 0 to −α. The new determinant

is therefore given by

det(I − αG∗) =
1

h(ni + 1)
det(L∗ − αW∗),

where G∗, L∗, and αW∗ are the new matrices once aij has been updated.

• If aij = 1 before the update, then the new degree of k will be ni − 1. Thus, the

entry (i, i) in L − αW will change from h(ni) to h(ni − 1), and the entry (i, j)

will change from −α to 0. The new determinant is therefore given by

det(I − αG∗) =
1

h(ni − 1)
det(L∗ − αW∗).

Then, to update det(L−αW) when only the entries (i, i) and (i, j) change, we adapt

the Lemma 1 in Hsieh et al. (2019) as follows:

Proposition 3. Let ei be the i’th unit basis vector in RN . Let M denote an N × N

matrix and Bij(Q, ϵ) an N × N matrix as a function of an N × N matrix Q and a

real value ϵ, such that

Bij(Q, ϵ) =
Qeie′

jQ
1 + ϵe′

jQei

. (15)

Adding a perturbation ϵ1 in the (i, i)th position and a perturbation ϵ2 in the (i, j)th

position to the matrix M can be written as M̃ = M + ϵ1eie′
i + ϵ2eie′

j.
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1. The inverse of the perturbed matrix can be written as

M̃−1 = M−1 − ϵ1Bii(M−1, ϵ1)− ϵ2Bij

(
M−1 − ϵ1Bii(M−1, ϵ1), ϵ2

)
.

2. The determinant of the perturbed matrix can be written as

det
(

M̃
)
=
(
1 + ϵ2e′

j

(
M−1 − ϵ1Bii(M−1, ϵ1)ei

))
(1 + ϵ1e′

iM−1ei)det (M) .

Proof. 1. By the Sherman–Morrison formula (Mele, 2017), we have

(
M + ϵeie′

j

)−1
= M−1 − ϵ

M−1eie′
jM−1

1 + ϵe′
jM−1ei

= M−1 − ϵBij(M, ϵ).

Thus,

M̃−1 =
(
(M + ϵ1eie′

i) + ϵ2eie′
j

)−1
,

M̃−1 = (M + ϵ1eie′
i)
−1 − ϵ2Bij((M + ϵ1eie′

i)
−1, ϵ2),

M̃−1 = M−1 − ϵ1Bii(M−1, ϵ1)− ϵ2Bij

(
M−1 − ϵ1Bii(M−1, ϵ1), ϵ2

)
.

2. By the matrix determinant lemma (Johnson and Horn, 1985), we have

det
(
M + ϵeie′

j

)
= (1 + ϵe′

jM−1ei)det (M) .

It follows that

det
(

M̃
)

= det
(
(M + ϵ1eie′

i) + ϵ2eie′
j

)
,

det
(

M̃
)

= (1 + ϵ2e′
j(M + ϵ1eie′

i)
−1ei)det (M + ϵ1eie′

i) ,

det
(

M̃
)

=
(
1 + ϵ2e′

j

(
M−1 − ϵ1Bii(M−1, ϵ1)ei

))
(1 + ϵ1e′

iM−1ei)det (M) .
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The method proposed above becomes computationally intensive when many entries

must be updated simultaneously. We also propose an alternative method that allows

updating the block for entries in A. Let D = (I − αG); we can write

det(D) =
N∑
j=1

(−1)i+jDijδij, (16)

where i denotes any row of D and δij is the minor38 associated with the entry (i, j).

The minors of row i do not depend on the values of entries in row i. To update

any block in row i, we therefore compute the N minors associated with i and use

this minor within the row. We can then update many entries simultaneously without

increasing the number of times that we compute det(D).

One possibility is to update multiple links simultaneously by randomly choosing the

number of entries to consider and their position in the row. As suggested by Chib

and Ramamurthy (2010), this method would help the Gibbs to converge more quickly.

We can summarize how we update the row i as follows:

1. Compute the N minors δi1, . . . , δin .

2. Let ΩG be the entries to update in the row i, and nG = |ΩG| the number of

entries in ΩG.

(a) Choose r, the size of the block to update, as a random integer number

such that 1 ≤ r ≤ nG. In practice, we choose r ≤ min(5, nG) because the

number of possibilities of links to consider grows exponentially with r.

(b) Choose the r random entries from ΩG. These entries define the block to

update.

(c) Compute the posterior probabilities of all possibilities of links inside the

block and update the block (there are 2r possibilities). Use the minors

calculated at 1 and the formula (16) to quickly compute det(D).
38The determinant of the submatrix of M by removing row i and column j.
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(d) Remove the r drawn positions from ΩG and let nG = nG − r. Replicate

2a, 2b, and 2c until nG = 0.
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