# COUNT DATA MODELS WITH SOCIAL INTERACTIONS UNDER RATIONAL EXPECTATIONS

#### A. Houndetoungan

Department of Economics Université Laval

February 19, 2021

## • Why is it important to estimate peer effects? (Manski 1993, REStud)

- E.g, Participation in extracurricular activities.
- Decrease in the number of hours in class; Student increases his participation;
   Student's friends increase their participation;
- Because Student's friends increase their participation, Student further increases his participation; . . .
- Social multiplier increasing the impact of exogenous shocks (direct impact due exogenous shocks + indirect impact because friends change their behavior).

#### Example of model

#### Behavior = F (Friend's Behavior, Control Variables)

- Peer effects in adolescent overweight (Trogdon, Nonnemaker, and Pais 2008, JHE):
- Peer effects in education (Calvó-Armengol, Patacchini, and Zenou 2009, REStud);
- Peer effects in the workplace (Cornelissen, Dustmann, and Schönberg 2017, AER).

**4□ > 4□ > 4 = > 4 = > = |= 40,0** 

## • Why is it important to estimate peer effects? (Manski 1993, REStud)

- E.g, Participation in extracurricular activities.
- Decrease in the number of hours in class; Student increases his participation;
   Student's friends increase their participation;
- Because Student's friends increase their participation, Student further increases his participation; . . .
- Social multiplier increasing the impact of exogenous shocks (direct impact due exogenous shocks + indirect impact because friends change their behavior).

#### Example of model

#### Behavior = F (Friend's Behavior, Control Variables)

- Peer effects in adolescent overweight (Trogdon, Nonnemaker, and Pais 2008, JHE)
- Peer effects in education (Calvó-Armengol, Patacchini, and Zenou 2009, REStud);
- Peer effects in the workplace (Cornelissen, Dustmann, and Schönberg 2017, AER).

# • Why is it important to estimate peer effects? (Manski 1993, REStud)

- E.g, Participation in extracurricular activities.
- Decrease in the number of hours in class; Student increases his participation;
   Student's friends increase their participation;
- Because Student's friends increase their participation, Student further increases his participation; . . .
- Social multiplier increasing the impact of exogenous shocks (direct impact due exogenous shocks + indirect impact because friends change their behavior).

#### Example of model

#### Behavior = F (Friend's Behavior, Control Variables)

- Peer effects in adolescent overweight (Trogdon, Nonnemaker, and Pais 2008, JHE):
- Peer effects in education (Calvó-Armengol, Patacchini, and Zenou 2009, REStud);
- Peer effects in the workplace (Cornelissen, Dustmann, and Schönberg 2017, AER).

# • Why is it important to estimate peer effects? (Manski 1993, REStud)

- E.g, Participation in extracurricular activities.
- Decrease in the number of hours in class; Student increases his participation;
   Student's friends increase their participation;
- Because Student's friends increase their participation, Student further increases his participation; . . .
- Social multiplier increasing the impact of exogenous shocks (direct impact due exogenous shocks + indirect impact because friends change their behavior).

#### Example of model

## Behavior = F (Friend's Behavior, Control Variables)

- Peer effects in adolescent overweight (Trogdon, Nonnemaker, and Pais 2008, JHE);
- Peer effects in education (Calvó-Armengol, Patacchini, and Zenou 2009, REStud);
- Peer effects in the workplace (Cornelissen, Dustmann, and Schönberg 2017, AER).

# • Why is it important to estimate peer effects? (Manski 1993, REStud)

- E.g, Participation in extracurricular activities.
- Decrease in the number of hours in class; Student increases his participation;
   Student's friends increase their participation;
- Because Student's friends increase their participation, Student further increases his participation; . . .
- Social multiplier increasing the impact of exogenous shocks (direct impact due exogenous shocks + indirect impact because friends change their behavior).

#### Example of model

Behavior = F (Friend's Behavior, Control Variables)

- Peer effects in adolescent overweight (Trogdon, Nonnemaker, and Pais 2008, JHE);
- Peer effects in education (Calvó-Armengol, Patacchini, and Zenou 2009, REStud);
- Peer effects in the workplace (Cornelissen, Dustmann, and Schönberg 2017, AER).

Count Data & Network February 1

 Example of count data from Add Health: Number of extracurricular activities in which students are enrolled.



- Models with social interactions:
  - Linear-in-means model (Bramoullé, Djebbari, and Fortin 2009, JE), (L.-F. Lee 2004, Econometrica);
  - Binary data (Brock and Durlauf 2001, REStud), (Brock and Durlauf 2001, REStat);

Example of count data from Add Health: Number of extracurricular activities in which students are enrolled.



Integer values and left censored at zero

- Models with social interactions:
  - 1 Linear-in-means model (Bramoullé, Djebbari, and Fortin 2009, JE), (L.-F. Lee 2004, Econometrica);

• Example of count data from Add Health: Number of extracurricular activities in which students are enrolled.



Integer values and left censored at zero

- Models with social interactions:
  - 1 Linear-in-means model (Bramoullé, Djebbari, and Fortin 2009, JE), (L.-F. Lee 2004, Econometrica);
  - 2 Binary data (Brock and Durlauf 2001, REStud), (Brock and Durlauf 2001, REStat);

• Example of count data from Add Health: Number of extracurricular activities in which students are enrolled.



Integer values and left censored at zero

- Models with social interactions:
  - 1 Linear-in-means model (Bramoullé, Djebbari, and Fortin 2009, JE), (L.-F. Lee 2004, Econometrica);
  - 2 Binary data (Brock and Durlauf 2001, REStud), (Brock and Durlauf 2001, REStat);

- Model of random utility dealing with networks and count choices.
  - Number of count choices is unbounded:
  - Game of incomplete information.
- ② Generalization of Rational Expectation model presented by L.-f. Lee, Li, and Lin 2014 (REStat) for binary outcome.
- Ounder some conditions, e.g, when the number of count choices is large my model is asymptotically similar to the linear models;
  - Linear Spatial Autoregressive (SAR) model (L.-F. Lee 2004, Econometrica);
  - Spatial Autoregressive Tobit (SART) model (Xu and L.-f. Lee 2015, JE).

- Model of random utility dealing with networks and count choices.
  - Number of count choices is unbounded;
  - Game of incomplete information.
- 2 Generalization of Rational Expectation model presented by L.-f. Lee, Li, and Lin 2014 (REStat) for binary outcome.
- Ounder some conditions, e.g, when the number of count choices is large my model is asymptotically similar to the linear models;
  - Linear Spatial Autoregressive (SAR) model (L.-F. Lee 2004, Econometrica);
  - Spatial Autoregressive Tobit (SART) model (Xu and L.-f. Lee 2015, JE)

- Model of random utility dealing with networks and count choices.
  - Number of count choices is unbounded;
  - Game of incomplete information.
- Generalization of Rational Expectation model presented by L.-f. Lee, Li, and Lin
   2014 (REStat) for binary outcome.
- Ounder some conditions, e.g, when the number of count choices is large my model is asymptotically similar to the linear models;
  - Linear Spatial Autoregressive (SAR) model (L.-F. Lee 2004, Econometrica);
  - Spatial Autoregressive Tobit (SART) model (Xu and L.-f. Lee 2015, JE).

- Model of random utility dealing with networks and count choices.
  - Number of count choices is unbounded;
  - Game of incomplete information.
- Generalization of Rational Expectation model presented by L.-f. Lee, Li, and Lin
   2014 (REStat) for binary outcome.
- Ounder some conditions, e.g, when the number of count choices is large my model is asymptotically similar to the linear models;
  - Linear Spatial Autoregressive (SAR) model (L.-F. Lee 2004, Econometrica);
  - Spatial Autoregressive Tobit (SART) model (Xu and L.-f. Lee 2015, JE).

- (Application) Peer effects on the number of extracurricular activities in which students are enrolled.
  - Peer marginal effect: 0.294
  - SART model: 0.141, SAR model 0.166;
- Endogeneity of the network controlled.
  - Unobserved variables such as sociability degree may explain the network and the participation in extracurricular activities;
  - Do not take into account the endogeneity of the network significantly overestimates the peer effects.
- An easy to use R package—named CDatanet—located on my GitHub implementing the model.

- (Application) Peer effects on the number of extracurricular activities in which students are enrolled.
  - Peer marginal effect: 0.294;
  - SART model: 0.141, SAR model 0.166;
- Endogeneity of the network controlled.
  - Unobserved variables such as sociability degree may explain the network and the participation in extracurricular activities;
  - Do not take into account the endogeneity of the network significantly overestimates the peer effects.
- An easy to use R package—named CDatanet—located on my GitHub implementing the model.

- (Application) Peer effects on the number of extracurricular activities in which students are enrolled.
  - Peer marginal effect: 0.294;
  - SART model: 0.141, SAR model 0.166;
- Endogeneity of the network controlled.
  - Unobserved variables such as sociability degree may explain the network and the participation in extracurricular activities;
  - Do not take into account the endogeneity of the network significantly overestimates the peer effects.
- An easy to use R package—named CDatanet—located on my GitHub implementing the model.

- (Application) Peer effects on the number of extracurricular activities in which students are enrolled.
  - Peer marginal effect: 0.294;
  - SART model: 0.141, SAR model 0.166;
- 2 Endogeneity of the network controlled.
  - Unobserved variables such as sociability degree may explain the network and the participation in extracurricular activities;
  - Do not take into account the endogeneity of the network significantly overestimates the peer effects.
- An easy to use R package—named CDatanet—located on my GitHub implementing the model.

- (Application) Peer effects on the number of extracurricular activities in which students are enrolled.
  - Peer marginal effect: 0.294;
  - SART model: 0.141, SAR model 0.166;
- 2 Endogeneity of the network controlled.
  - Unobserved variables such as sociability degree may explain the network and the participation in extracurricular activities;
  - Do not take into account the endogeneity of the network significantly overestimates the peer effects.
- An easy to use R package—named CDatanet—located on my GitHub implementing the model.

- (Application) Peer effects on the number of extracurricular activities in which students are enrolled.
  - Peer marginal effect: 0.294;
  - SART model: 0.141, SAR model 0.166;
- 2 Endogeneity of the network controlled.
  - Unobserved variables such as sociability degree may explain the network and the participation in extracurricular activities;
  - Do not take into account the endogeneity of the network significantly overestimates the peer effects.
- An easy to use R package—named CDatanet—located on my GitHub implementing the model.

- (Application) Peer effects on the number of extracurricular activities in which students are enrolled.
  - Peer marginal effect: 0.294;
  - SART model: 0.141, SAR model 0.166;
- 2 Endogeneity of the network controlled.
  - Unobserved variables such as sociability degree may explain the network and the participation in extracurricular activities;
  - Do not take into account the endogeneity of the network significantly overestimates the peer effects.
- An easy to use R package—named CDatanet—located on my GitHub implementing the model.

#### Outline

Microeconomics Foundations

② Estimation Strategy

Monte Carlo simulations

Empirical Application

• Individuals choose a continuous latent variable  $y_i^*$  (interpreted as an intention, see Maddala 1986) which determines  $y_i$  (the observed variable).

• Binary choices (L.-f. Lee, Li, and Lin 2014; Liu 2019)

|                 | -2 | -1 | 1 | 2 | 3 | 4 | 5 | 6 |
|-----------------|----|----|---|---|---|---|---|---|
| Latent Variable |    |    |   |   |   |   |   |   |
| Binary choices  |    |    |   |   |   |   |   |   |

Assumption for count variable (see Cameron and Trivedi 1990).

|                 | -2 | -1 |     | 1 | 2 | 3 | 4 | 5 | 6 |
|-----------------|----|----|-----|---|---|---|---|---|---|
| Latent Variable | -  | -  | · ~ |   | ~ | ~ | - | ~ |   |
| Count choices   |    |    |     |   |   |   |   |   |   |
|                 |    |    |     |   |   |   |   |   |   |

• Individuals choose a continuous latent variable  $y_i^*$  (interpreted as an intention, see Maddala 1986) which determines  $y_i$  (the observed variable).

• Binary choices (L.-f. Lee, Li, and Lin 2014; Liu 2019).

| (               |    | , , |   | , |   | , |   |   |   |
|-----------------|----|-----|---|---|---|---|---|---|---|
|                 | -2 | -1  | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| Latent Variable | _  |     |   |   |   |   |   | + |   |
| Binary choices  |    | 0   |   |   |   | 1 |   |   |   |

• Assumption for count variable (see Cameron and Trivedi 1990).

|                 | -2 | -1 | 1 | 2     | 3    | 4 | 5                                                 | 6 |
|-----------------|----|----|---|-------|------|---|---------------------------------------------------|---|
| Latent Variable |    | -  | - | , γ . | , γ. |   | $\leftarrow \stackrel{\cdot}{\gamma} \rightarrow$ |   |
| Count choices   |    |    |   |       |      |   |                                                   |   |

• Individuals choose a continuous latent variable  $y_i^*$  (interpreted as an intention, see Maddala 1986) which determines  $y_i$  (the observed variable).

• Binary choices (L.-f. Lee, Li, and Lin 2014; Liu 2019).

| •               |    |    |   | , |   | , |   |   |   |
|-----------------|----|----|---|---|---|---|---|---|---|
|                 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| Latent Variable | _  |    |   |   |   |   |   |   |   |
| Binary choices  |    | 0  |   |   |   | 1 |   |   |   |

• Assumption for count variable (see Cameron and Trivedi 1990).

| T / / 37 : 11   | -2 | -1 | 0                   | 1             | 2                                        | ; | 3                                        | 4 | 5                                        | 6 |
|-----------------|----|----|---------------------|---------------|------------------------------------------|---|------------------------------------------|---|------------------------------------------|---|
| Latent Variable |    | •  | $\leftarrow \gamma$ | $\rightarrow$ | $\stackrel{\gamma}{\longleftrightarrow}$ |   | $\stackrel{\gamma}{\longleftrightarrow}$ | • | $\stackrel{\gamma}{\longleftrightarrow}$ |   |
| Count choices   |    | 0  | 1                   | 2             | 3                                        | 4 | 5                                        | 6 | 7                                        | 8 |

• Individuals choose a continuous latent variable  $y_i^*$  (interpreted as an intention, see Maddala 1986) which determines  $y_i$  (the observed variable).

• Binary choices (L.-f. Lee, Li, and Lin 2014; Liu 2019).

|                 | -2 | -1 | 0 | 1           | 2 | 3 | 4 | 5 | 6 |
|-----------------|----|----|---|-------------|---|---|---|---|---|
| Latent Variable |    | -  | - | <del></del> |   |   |   | - | — |
| Binary choices  |    | 0  |   |             |   | 1 |   |   |   |

• Assumption for count variable (see Cameron and Trivedi 1990).

| T 4 4 37 . 11   | -2 | -1 | 0                   | 1   | 2                                        | 3 | 3                                        | 4 | 5                                        | 6 |
|-----------------|----|----|---------------------|-----|------------------------------------------|---|------------------------------------------|---|------------------------------------------|---|
| Latent Variable |    | •  | $\leftarrow \gamma$ | → · | $\stackrel{\gamma}{\longleftrightarrow}$ |   | $\stackrel{\gamma}{\longleftrightarrow}$ |   | $\stackrel{\gamma}{\longleftrightarrow}$ |   |
| Count choices   |    | 0  | 1                   | 2   | 3                                        | 4 | 5                                        | 6 | 7                                        | 8 |

#### Game: Preferences

Preferences (see also Ballester, Calvó-Armengol, and Zenou 2006;
 Calvó-Armengol, Patacchini, and Zenou 2009).

$$\mathcal{U}_{i} = \underbrace{\left(\psi_{i} + \varepsilon_{i}\right) y_{i}^{*} - \frac{y_{i}^{*2}}{2}}_{\text{private sub-utility}} + \underbrace{\lambda y_{i}^{*} \sum_{j \neq i} g_{ij} y_{j}}_{\text{social sub-utility}}$$
(1)

where  $\psi_i$ ,  $\lambda \in \mathbb{R}$  and  $\varepsilon_i$  is a private information with a common distribution known among individuals.

Expected utility

$$\mathbf{E}\left(\mathcal{U}_{i}|y_{i}^{*},\varepsilon_{i},\lambda,\boldsymbol{\psi},\mathbf{G}\right) = \left(\psi_{i}+\varepsilon_{i}\right)y_{i}^{*} - \frac{y_{i}^{*2}}{2} + \lambda y_{i}^{*}\sum_{j\neq i}g_{ij}\bar{y}_{j},\tag{2}$$

where  $\forall j \in \mathcal{V}$ ,

$$i_j = \sum_{r=0}^{\infty} r p_{jr} \tag{3}$$

and  $p_{jr}$  is the probability of  $y_j = r$ .

#### Game: Preferences

Preferences (see also Ballester, Calvó-Armengol, and Zenou 2006;
 Calvó-Armengol, Patacchini, and Zenou 2009).

$$\mathcal{U}_{i} = \underbrace{(\psi_{i} + \varepsilon_{i}) y_{i}^{*} - \frac{y_{i}^{*2}}{2}}_{\text{private sub-utility}} + \underbrace{\lambda y_{i}^{*} \sum_{j \neq i} g_{ij} y_{j}}_{\text{social sub-utility}}$$
(1)

where  $\psi_i$ ,  $\lambda \in \mathbb{R}$  and  $\varepsilon_i$  is a private information with a common distribution known among individuals.

Expected utility

$$\mathbf{E}\left(\mathcal{U}_{i}|y_{i}^{*},\varepsilon_{i},\lambda,\boldsymbol{\psi},\mathbf{G}\right) = \left(\psi_{i}+\varepsilon_{i}\right)y_{i}^{*} - \frac{y_{i}^{*2}}{2} + \lambda y_{i}^{*}\sum_{j\neq i}g_{ij}\bar{y}_{j},\tag{2}$$

where  $\forall j \in \mathcal{V}$ ,

$$\bar{\mathbf{y}}_j = \sum_{r=0}^{\infty} r p_{jr} \tag{3}$$

and  $p_{jr}$  is the probability of  $y_j = r$ .

• focs

$$y_i^* = \lambda \mathbf{g}_i \bar{\mathbf{y}} + \mathbf{x}_i' \boldsymbol{\beta} + \varepsilon_i, \tag{4}$$

• Belief at equilibrium for all i = 1, ..., n and  $q \in \mathbb{N}$ 

$$p_{iq} = \mathcal{F}(y_i \in (a_{q-1}, a_q))$$

$$p_{iq} = \mathcal{F}_{\varepsilon} \left( \lambda \mathbf{g}_i \bar{\mathbf{y}} + \mathbf{x}_i' \boldsymbol{\beta} - a_q \right) - \mathcal{F}_{\varepsilon} \left( \lambda \mathbf{g}_i \bar{\mathbf{y}} + \mathbf{x}_i' \boldsymbol{\beta} - a_{q+1} \right)$$
(5)

- $\bar{y}_i = \sum_{r=0}^{\infty} r p_{ir}$ .  $\Longrightarrow$  Bijective function between  $(p_{iq})$  and  $(\bar{y}_i)$ .
- Fixed point equation:  $\bar{y}_i = \mathbf{L}(\bar{\mathbf{y}})$ .



• focs

$$y_i^* = \lambda \mathbf{g}_i \bar{\mathbf{y}} + \mathbf{x}_i' \boldsymbol{\beta} + \varepsilon_i, \tag{4}$$

• Belief at equilibrium for all i = 1, ..., n and  $q \in \mathbb{N}$ 

$$p_{iq} = \mathcal{P}\left(y_i^* \in (a_{q-1}, \ a_q)\right)$$

$$p_{iq} = F_{\varepsilon}\left(\lambda \mathbf{g}_i \bar{\mathbf{y}} + \mathbf{x}_i' \boldsymbol{\beta} - a_q\right) - F_{\varepsilon}\left(\lambda \mathbf{g}_i \bar{\mathbf{y}} + \mathbf{x}_i' \boldsymbol{\beta} - a_{q+1}\right)$$
(5)

- $\bar{y}_i = \sum_{r=0}^{\infty} r p_{ir}$ .  $\Longrightarrow$  Bijective function between  $(p_{iq})$  and  $(\bar{y}_i)$ .
- Fixed point equation:  $\bar{y}_i = \mathbf{L}(\bar{\mathbf{y}})$ .

$$\bar{y}_i = \sum_{r=1}^{\infty} F_{\varepsilon} \left( \lambda \mathbf{g}_i \bar{\mathbf{y}} + \mathbf{x}_i' \boldsymbol{\beta} - a_r \right)$$
 (6)

• focs

$$y_i^* = \lambda \mathbf{g}_i \bar{\mathbf{y}} + \mathbf{x}_i' \boldsymbol{\beta} + \varepsilon_i, \tag{4}$$

• Belief at equilibrium for all i = 1, ..., n and  $q \in \mathbb{N}$ 

$$p_{iq} = \mathcal{P}\left(y_i^* \in (a_{q-1}, \ a_q)\right)$$

$$p_{iq} = \mathcal{F}_{\varepsilon}\left(\lambda \mathbf{g}_i \bar{\mathbf{y}} + \mathbf{x}_i' \boldsymbol{\beta} - a_q\right) - \mathcal{F}_{\varepsilon}\left(\lambda \mathbf{g}_i \bar{\mathbf{y}} + \mathbf{x}_i' \boldsymbol{\beta} - a_{q+1}\right)$$
(5)

- $\bar{y}_i = \sum_{r=0}^{\infty} r p_{ir}$ .  $\Longrightarrow$  Bijective function between  $(p_{iq})$  and  $(\bar{y}_i)$ .
- Fixed point equation:  $\bar{y}_i = \mathbf{L}(\bar{\mathbf{y}})$



• focs

$$y_i^* = \lambda \mathbf{g}_i \bar{\mathbf{y}} + \mathbf{x}_i' \boldsymbol{\beta} + \varepsilon_i, \tag{4}$$

• Belief at equilibrium for all i = 1, ..., n and  $q \in \mathbb{N}$ 

$$p_{iq} = \mathcal{P}\left(y_i^* \in (a_{q-1}, \ a_q)\right)$$

$$p_{iq} = F_{\varepsilon}\left(\lambda \mathbf{g}_i \bar{\mathbf{y}} + \mathbf{x}_i' \boldsymbol{\beta} - a_q\right) - F_{\varepsilon}\left(\lambda \mathbf{g}_i \bar{\mathbf{y}} + \mathbf{x}_i' \boldsymbol{\beta} - a_{q+1}\right)$$
(5)

- $\bar{y}_i = \sum_{r=0}^{\infty} r p_{ir}$ .  $\Longrightarrow$  Bijective function between  $(p_{iq})$  and  $(\bar{y}_i)$ .
- Fixed point equation:  $\bar{y}_i = \mathbf{L}(\bar{\mathbf{y}})$ .

VS Poisson

$$\bar{y}_i = \sum_{r=1}^{\infty} F_{\varepsilon} \left( \lambda \mathbf{g}_i \bar{\mathbf{y}} + \mathbf{x}_i' \boldsymbol{\beta} - a_r \right)$$
 (6)

# Game: Equilibrium

- Equilibrium conditions
  - Distribution of ε<sub>i</sub> is continuous, with a derivable cdf, F<sub>ε</sub>, and a pdf, f<sub>ε</sub> which
    decrease exponentially in its tails;

• 
$$|\lambda| < \frac{C_{\gamma,\sigma_{\varepsilon}}}{||\mathbf{G}||_{\infty}}$$
, where  $C_{\gamma,\sigma_{\varepsilon}} = \frac{\sigma_{\varepsilon}}{\max_{u \in \mathbb{R}} \sum_{k=-\infty}^{\infty} f_{\varepsilon} \left(\frac{u + \gamma k}{\sigma_{\varepsilon}}\right)}$ .

- If  $\varepsilon_i \stackrel{iid}{\sim} \mathcal{N}\left(0, \sigma_{\varepsilon}^2\right)$ ,

$$C_{\gamma,\sigma_{\varepsilon}} = \frac{\sigma_{\varepsilon}}{\phi(0) + 2\sum_{k=1}^{\infty} \phi\left(\frac{\gamma k}{\sigma_{\varepsilon}}\right)}$$

- ·
- If  $\gamma = \infty$ , (ii) implies  $|\lambda| < \frac{\sigma_{\varepsilon}}{||\mathbf{G}||_{\infty}\phi(0)}$ , which is the restriction set on  $|\lambda|$  in binary models (L.-f. Lee, Li, and Lin 2014; Liu 2019).
- Under the equilibrium condition, **L** is a contracting mapping. The game has a unique equilibrium and there is a unique expected outcome  $\bar{y}$  such that  $\bar{y} = L(\bar{y})$

# Game: Equilibrium

- Equilibrium conditions
  - Distribution of ε<sub>i</sub> is continuous, with a derivable cdf, F<sub>ε</sub>, and a pdf, f<sub>ε</sub> which
    decrease exponentially in its tails;

• 
$$|\lambda| < \frac{C_{\gamma,\sigma_{\varepsilon}}}{||\mathbf{G}||_{\infty}}$$
, where  $C_{\gamma,\sigma_{\varepsilon}} = \frac{\sigma_{\varepsilon}}{\max_{u \in \mathbb{R}} \sum_{k=-\infty}^{\infty} f_{\varepsilon} \left(\frac{u + \gamma k}{\sigma_{\varepsilon}}\right)}$ .

- If  $\varepsilon_i \stackrel{iid}{\sim} \mathcal{N}\left(0, \sigma_{\varepsilon}^2\right)$ ,

$$C_{\gamma,\sigma_{\varepsilon}} = \frac{\sigma_{\varepsilon}}{\phi(0) + 2\sum_{k=1}^{\infty} \phi\left(\frac{\gamma_k}{\sigma_{\varepsilon}}\right)}$$

- .
- If  $\gamma = \infty$ , (ii) implies  $|\lambda| < \frac{\sigma_{\varepsilon}}{||\mathbf{G}||_{\infty}\phi(0)}$ , which is the restriction set on  $|\lambda|$  in binary models (L.-f. Lee, Li, and Lin 2014; Liu 2019).
- Under the equilibrium condition, **L** is a contracting mapping. The game has a unique equilibrium and there is a unique expected outcome  $\bar{y}$  such that  $\bar{y} = L(\bar{y})$

# Game: Equilibrium

- Equilibrium conditions
  - Distribution of ε<sub>i</sub> is continuous, with a derivable cdf, F<sub>ε</sub>, and a pdf, f<sub>ε</sub> which
    decrease exponentially in its tails;

• 
$$|\lambda| < \frac{C_{\gamma,\sigma_{\varepsilon}}}{||\mathbf{G}||_{\infty}}$$
, where  $C_{\gamma,\sigma_{\varepsilon}} = \frac{\sigma_{\varepsilon}}{\max_{u \in \mathbb{R}} \sum_{k=-\infty}^{\infty} f_{\varepsilon} \left(\frac{u + \gamma k}{\sigma_{\varepsilon}}\right)}$ .

- If  $\varepsilon_i \stackrel{iid}{\sim} \mathcal{N}\left(0, \sigma_{\varepsilon}^2\right)$ ,

$$C_{\gamma,\sigma_{\varepsilon}} = \frac{\sigma_{\varepsilon}}{\phi(0) + 2\sum_{k=1}^{\infty} \phi\left(\frac{\gamma_k}{\sigma_{\varepsilon}}\right)}$$

- If  $\gamma = \infty$ , (ii) implies  $|\lambda| < \frac{\sigma_{\varepsilon}}{||\mathbf{G}||_{\infty}\phi(0)}$ , which is the restriction set on  $|\lambda|$  in binary models (L.-f. Lee, Li, and Lin 2014; Liu 2019).
- Under the equilibrium condition,  $\mathbf{L}$  is a contracting mapping. The game has a unique equilibrium and there is a unique expected outcome  $\bar{\mathbf{y}}$  such that  $\bar{\mathbf{v}} = \mathbf{L}(\bar{\mathbf{v}})$ .

#### Outline

• Microeconomics Foundations

2 Estimation Strategy

3 Monte Carlo simulations

Empirical Application

# Estimation strategy

- Estimation done using the NPL algorithm proposed by Aguirregabiria and Mira 2007.
- Likelihood

$$\mathcal{L}(\boldsymbol{\theta}, \bar{\mathbf{y}}) = \sum_{i=1}^{n} \sum_{r=0}^{\infty} \mathrm{I}\left\{y_i = r\right\} \log(p_{ir})$$

- Estimation
  - Start with a proposal  $\bar{\mathbf{y}}_0$  for  $\bar{\mathbf{y}}$ ;
  - Compute  $\theta_1 = \arg \max \mathcal{L}(\theta, \bar{\mathbf{y}}_0)$  and  $\mathbf{y}_1 = \mathbf{L}(\bar{\mathbf{y}}_0, \theta_1)$ ;
  - Compute  $\theta_2 = \arg \max_{\theta} \mathcal{L}(\theta, \bar{\mathbf{y}}_1), \ \mathbf{y}_2 = \mathbf{L}(\bar{\mathbf{y}}_1, \theta_2);$
  - . .
  - If  $\{\theta_m, \bar{\mathbf{y}}_m\}_{m\geq 1}$  converges, regardless of the initial guess  $\bar{\mathbf{y}}_0$ , then  $\hat{\boldsymbol{\theta}} = \lim_{m \to \infty} \theta_m$ .
- I adapt the Proposition 2 in Aguirregabiria and Mira 2007 and prove that  $\hat{\theta}$  is consistent with a normal distribution.



# Estimation strategy

- Estimation done using the NPL algorithm proposed by Aguirregabiria and Mira 2007.
- Likelihood

$$\mathcal{L}(\boldsymbol{\theta}, \bar{\mathbf{y}}) = \sum_{i=1}^{n} \sum_{r=0}^{\infty} \mathbf{I} \{ y_i = r \} \log(p_{ir})$$

- Estimation
  - Start with a proposal  $\bar{\mathbf{y}}_0$  for  $\bar{\mathbf{y}}$ ;
  - Compute  $\theta_1 = \arg \max_{\mathbf{a}} \mathcal{L}(\theta, \bar{\mathbf{y}}_0)$  and  $\mathbf{y}_1 = \mathbf{L}(\bar{\mathbf{y}}_0, \theta_1)$ ;
  - Compute  $\theta_2 = \arg \max_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}, \bar{\mathbf{y}}_1), \ \mathbf{y}_2 = \mathbf{L}(\bar{\mathbf{y}}_1, \boldsymbol{\theta}_2);$
  - ..
  - If  $\{\theta_m, \bar{\mathbf{y}}_m\}_{m\geq 1}$  converges, regardless of the initial guess  $\bar{\mathbf{y}}_0$ , then  $\hat{\mathbf{\theta}} = \lim_{m \to \infty} \mathbf{\theta}_m$ .
- I adapt the Proposition 2 in Aguirregabiria and Mira 2007 and prove that  $\hat{\theta}$  is consistent with a normal distribution.

# Estimation strategy

- Estimation done using the NPL algorithm proposed by Aguirregabiria and Mira 2007.
- Likelihood

$$\mathcal{L}(\boldsymbol{\theta}, \bar{\mathbf{y}}) = \sum_{i=1}^{n} \sum_{r=0}^{\infty} I\{y_i = r\} \log(p_{ir})$$

- Estimation
  - Start with a proposal  $\bar{\mathbf{y}}_0$  for  $\bar{\mathbf{y}}$ ;
  - Compute  $\theta_1 = \arg \max_{\mathbf{a}} \mathcal{L}(\theta, \bar{\mathbf{y}}_0)$  and  $\mathbf{y}_1 = \mathbf{L}(\bar{\mathbf{y}}_0, \theta_1)$ ;
  - Compute  $\theta_2 = \arg \max_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}, \bar{\mathbf{y}}_1), \ \mathbf{y}_2 = \mathbf{L}(\bar{\mathbf{y}}_1, \boldsymbol{\theta}_2);$
  - ...
  - If  $\{\theta_m, \bar{\mathbf{y}}_m\}_{m\geq 1}$  converges, regardless of the initial guess  $\bar{\mathbf{y}}_0$ , then  $\hat{\mathbf{\theta}} = \lim_{m \to \infty} \theta_m$ .
- I adapt the Proposition 2 in Aguirregabiria and Mira 2007 and prove that  $\hat{\theta}$  is consistent with a normal distribution.

## Comparison with the linear model

What happens if the econometrician estimates,

$$y_i = \tilde{\lambda} \mathbf{g}_i \mathbf{y} + \mathbf{x}_i' \tilde{\boldsymbol{\beta}} + \nu_i? \tag{7}$$

instead of the true first order condition,

$$y_i^* = \lambda \sum_{j=1}^n g_{ij}\bar{y}_j + \mathbf{x}_i'\boldsymbol{\beta} + \varepsilon_i$$
 (8)

- The maximum likelihood estimator (MLE) of the parameter  $\lambda$  based on the assumption  $\nu_i \stackrel{iid}{\sim} \mathcal{N}\left(0, \sigma_{\nu}^2\right)$ , where  $\sigma_{\nu}^2$  is an unknown parameter, is inconsistent.
- If **X** is a column vector of ones, the asymptotic bias of  $\hat{\tilde{\lambda}}_{2SLS}$  is,

$$-\lambda \lim_{n \to \infty} \frac{\sum_{i=1}^{n} \text{Var}(\tilde{\mathbf{g}_{i}}\mathbf{y}|\mathbf{X}, \mathbf{G}, \mathbf{Z})}{\sum_{i=1}^{n} \text{Var}(\tilde{\mathbf{g}_{i}}\mathbf{y})}$$
(9)

• The bias decreases if  $y_i$  takes its values in a large range



## Comparison with the linear model

What happens if the econometrician estimates,

$$y_i = \tilde{\lambda} \mathbf{g}_i \mathbf{y} + \mathbf{x}_i' \tilde{\boldsymbol{\beta}} + \nu_i? \tag{7}$$

instead of the true first order condition,

$$y_i^* = \lambda \sum_{j=1}^n g_{ij} \bar{y}_j + \mathbf{x}_i' \boldsymbol{\beta} + \varepsilon_i$$
 (8)

- The maximum likelihood estimator (MLE) of the parameter  $\tilde{\lambda}$  based on the assumption  $\nu_i \stackrel{iid}{\sim} \mathcal{N}\left(0, \sigma_{\nu}^2\right)$ , where  $\sigma_{\nu}^2$  is an unknown parameter, is inconsistent.
- If **X** is a column vector of ones, the asymptotic bias of  $\hat{\tilde{\lambda}}_{2SLS}$  is,

$$-\lambda \lim_{n \to \infty} \frac{\sum_{i=1}^{n} \mathbf{Var}(\mathbf{g}_{i}^{\mathbf{y}}|\mathbf{X}, \mathbf{G}, \mathbf{Z})}{\sum_{i=1}^{n} \mathbf{Var}(\mathbf{g}_{i}^{\mathbf{y}})}$$
(9)

• The bias decreases if  $y_i$  takes its values in a large range



## Comparison with the linear model

What happens if the econometrician estimates,

$$y_i = \tilde{\lambda} \mathbf{g}_i \mathbf{y} + \mathbf{x}_i' \tilde{\boldsymbol{\beta}} + \nu_i? \tag{7}$$

instead of the true first order condition,

$$y_i^* = \lambda \sum_{j=1}^n g_{ij} \bar{y}_j + \mathbf{x}_i' \boldsymbol{\beta} + \varepsilon_i$$
 (8)

- The maximum likelihood estimator (MLE) of the parameter  $\tilde{\lambda}$  based on the assumption  $\nu_i \stackrel{iid}{\sim} \mathcal{N}\left(0, \sigma_{\nu}^2\right)$ , where  $\sigma_{\nu}^2$  is an unknown parameter, is inconsistent.
- If **X** is a column vector of ones, the asymptotic bias of  $\hat{\tilde{\lambda}}_{2SLS}$  is,

$$-\lambda \lim_{n \to \infty} \frac{\sum_{i=1}^{n} \mathbf{Var}\left(\mathbf{g}_{i}\mathbf{y}|\mathbf{X}, \mathbf{G}, \mathbf{Z}\right)}{\sum_{i=1}^{n} \mathbf{Var}\left(\mathbf{g}_{i}\mathbf{y}\right)}$$
(9)

• The bias decreases if  $y_i$  takes its values in a large range

4□▶ 4周▶ 4분▶ 4분▶ 분발 외약

## Outline

• Microeconomics Foundations

2 Estimation Strategy

3 Monte Carlo simulations

Empirical Application

#### Monte Carlo simulations

• Specification

$$y_i^* = \lambda \mathbf{g}_i \bar{\mathbf{y}} + \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \gamma_1 \mathbf{g}_i \mathbf{x}_1 + \gamma_2 \mathbf{g}_i \mathbf{x}_2 + \varepsilon_i,$$

• Example of simulated data for a sample size N=1500









# Monte Carlo simulations

|                 | CI                            | OSI   | SA    | RT    | SAR   |       |  |  |  |  |
|-----------------|-------------------------------|-------|-------|-------|-------|-------|--|--|--|--|
| Statistic       | Mean Sd.                      |       | Mean  | Sd.   | Mean  | Sd.   |  |  |  |  |
|                 | Low dispersion - $N = 1500$   |       |       |       |       |       |  |  |  |  |
|                 | Type A                        |       |       |       |       |       |  |  |  |  |
| $\lambda = 0.4$ | 0.402                         | 0.088 | 0.268 | 0.078 | 0.143 | 0.132 |  |  |  |  |
|                 | Type B                        |       |       |       |       |       |  |  |  |  |
| $\lambda = 0.4$ | 0.401                         | 0.056 | 0.288 | 0.050 | 0.272 | 0.074 |  |  |  |  |
|                 | Large dispersion - $N = 1500$ |       |       |       |       |       |  |  |  |  |
|                 | Type A                        |       |       |       |       |       |  |  |  |  |
| $\lambda = 0.4$ | 0.400                         | 0.020 | 0.383 | 0.020 | 0.296 | 0.063 |  |  |  |  |
|                 | Type B                        |       |       |       |       |       |  |  |  |  |
| $\lambda = 0.4$ | 0.400                         | 0.016 | 0.387 | 0.016 | 0.385 | 0.016 |  |  |  |  |

## Outline

Microeconomics Foundations

② Estimation Strategy

Monte Carlo simulations

4 Empirical Application

## Application

- Wave I of Add Health Data: Demographic characteristics of students as well as their friendship links (i.e., best friends, up to 5 females and up to 5 males).
- Number of extracurricular activities in which students are enrolled.



- Schools with more than 100 students.
- Contextual effects and school heterogeneity as fixed effects.

# Application: Exogenous network

• Network is exogenous:  $\mathbf{\epsilon} \perp \mathbf{G}$ .

| Parameters | Coef. | CDSI Coef. Marginal Effects |           | SART<br>Coef. Marginal Effects |       |            | SAR   |            |
|------------|-------|-----------------------------|-----------|--------------------------------|-------|------------|-------|------------|
| λ          | 0.443 | 0.363                       | 0.028)*** | 0.194                          | 0.157 | (0.005)*** | 0.185 | (0.006)*** |

## Application: Dyadic linking model

Probability of link formation

$$P_{ij} = \frac{\exp\left(\Delta \mathbf{x}'_{ij}\bar{\boldsymbol{\beta}} + \mu_i + \mu_j\right)}{1 + \exp\left(\Delta \mathbf{x}'_{ij}\bar{\boldsymbol{\beta}} + \mu_i + \mu_j\right)}.$$
 (10)

- Observed dyad-specific variables  $\Delta \mathbf{x}_{ij}$  (e.g, absolute value of age difference, indicator of same sex, ...).
- Unobserved individual-level attribute which captures the degree heterogeneity  $\mu_i$  (gregariousness).
- Unobserved individual-level attribute may explain  $y_i$ :  $\varepsilon \perp \mathbf{G}$  violated.

$$\mathbf{g}_{i}^{*} = \lambda \mathbf{g}_{i} \bar{\mathbf{y}} + \mathbf{x}_{i}^{\prime} \boldsymbol{\beta} + \mathbf{g}_{i} \mathbf{x}_{i}^{\prime} \boldsymbol{\delta} + \overbrace{\rho \mu_{i} + \overline{\rho} \mathbf{g}_{i} \mu + \widehat{\varepsilon}_{i}}^{\varsigma_{i}}$$

$$(11)$$

• Use MCMC algorithm to estimate (10); include  $\mu_i$  and  $\mathbf{g}_i \boldsymbol{\mu}$  as additional explanatory variable in the count data model.

## Application: Dyadic linking model

Probability of link formation

$$P_{ij} = \frac{\exp\left(\Delta \mathbf{x}'_{ij}\bar{\boldsymbol{\beta}} + \mu_i + \mu_j\right)}{1 + \exp\left(\Delta \mathbf{x}'_{ij}\bar{\boldsymbol{\beta}} + \mu_i + \mu_j\right)}.$$
 (10)

- Observed dyad-specific variables  $\Delta \mathbf{x}_{ij}$  (e.g, absolute value of age difference, indicator of same sex, ...).
- Unobserved individual-level attribute which captures the degree heterogeneity  $\mu_i$  (gregariousness).
- Unobserved individual-level attribute may explain  $y_i$ :  $\varepsilon \perp \mathbf{G}$  violated.

$$y_i^* = \lambda \mathbf{g}_i \bar{\mathbf{y}} + \mathbf{x}_i' \boldsymbol{\beta} + \mathbf{g}_i \mathbf{x}_i' \boldsymbol{\delta} + \overbrace{\rho \mu_i + \bar{\rho} \mathbf{g}_i \boldsymbol{\mu} + \tilde{\varepsilon}_i}^{\varepsilon_i}$$
(11)

• Use MCMC algorithm to estimate (10); include  $\mu_i$  and  $\mathbf{g}_i \boldsymbol{\mu}$  as additional explanatory variable in the count data model.

# Application: Endogenous network

• Without controlling for the endogeneity of the network

| Parameters | CDSI Coef. Marginal Effects |       | SART<br>Coef. Marginal Effects |       | SAR   |            |       |            |
|------------|-----------------------------|-------|--------------------------------|-------|-------|------------|-------|------------|
| λ          | 0.443                       | 0.363 | (0.028)***                     | 0.194 | 0.157 | (0.005)*** | 0.185 | (0.006)*** |
|            |                             |       |                                |       |       |            |       |            |

• Controlling for the endogeneity of the network



| Parameters                 | CDSI <sup>(1)</sup> Coef. Marginal Effects |       | Coef.      | SAR'<br>Margi | Г<br>nal Effects | SAR        |       |            |
|----------------------------|--------------------------------------------|-------|------------|---------------|------------------|------------|-------|------------|
| λ                          | 0.359                                      | 0.294 | (0.028)*** | 0.173         | 0.141            | (0.005)*** | 0.166 | (0.006)*** |
| $\rho\sigma_{\varepsilon}$ | 0.246                                      | 0.202 | (0.011)*** | 0.253         | 0.205            | (0.010)*** | 0.240 | (0.013)*** |
| $ar ho\sigma_arepsilon$    | 0.202                                      | 0.166 | (0.019)*** | 0.240         | 0.195            | (0.018)*** | 0.218 | (0.020)*** |

• Model with endogeneity is the best model according the likelihood ratio test.

February 19, 2021

- First model of random utility dealing with networks and count outcome.
- The model performs well on count data.
- Two main results.
  - 1 Integer nature of the outcome is important.
  - 2 The endogeneity of the network is important.
- (Next steps) Zeros inflated specification may be required (e.g., smoking).
- CDatanet package, https://github.com/ahoundetoungan/CDatanet.
  - $$\label{eq:cd_context} \begin{split} \text{CD} &\leftarrow \text{CDnetNPL}(\textbf{formula} = y ~\tilde{x}1 + x2\,,~\text{contextual} = \text{TRUE},\\ &\text{Glist} = \text{Network}\,,~\text{optimizer} = \text{"nlm"})\\ &\text{summary}(\text{CD}) \end{split}$$

- First model of random utility dealing with networks and count outcome.
- The model performs well on count data.
- Two main results.
  - 1 Integer nature of the outcome is important.
  - 2 The endogeneity of the network is important.
- (Next steps) Zeros inflated specification may be required (e.g., smoking).
- CDatanet package, https://github.com/ahoundetoungan/CDatanet.
  - $$\label{eq:cd_context} \begin{split} \text{CD} &\leftarrow \text{CDnetNPL}(\textbf{formula} = y ~\tilde{x}1 + x2 \,,~ \text{contextual} = \text{TRUE}, \\ &\text{Glist} = \text{Network} \,,~ \text{optimizer} = \text{"nlm"}) \\ &\text{summary}(\text{CD}) \end{split}$$

- First model of random utility dealing with networks and count outcome.
- The model performs well on count data.
- Two main results.
  - 1 Integer nature of the outcome is important.
  - 2 The endogeneity of the network is important.
- (Next steps) Zeros inflated specification may be required (e.g., smoking).
- CDatanet package, https://github.com/ahoundetoungan/CDatanet.

```
\label{eq:cd_context} \begin{split} \text{CD} &\leftarrow \text{CDnetNPL}(\textbf{formula} = y ~\tilde{\ } \text{x1} + \text{x2}\,, \text{ contextual} = \text{TRUE}, \\ &\text{Glist} = \text{Network}\,, \text{ optimizer} = \text{"nlm"}) \\ &\text{summary}(\text{CD}) \end{split}
```

- First model of random utility dealing with networks and count outcome.
- The model performs well on count data.
- Two main results.
  - 1 Integer nature of the outcome is important.
  - 2 The endogeneity of the network is important.
- (Next steps) Zeros inflated specification may be required (e.g., smoking).
- CDatanet package, https://github.com/ahoundetoungan/CDatanet.

```
\label{eq:cd_context} \begin{split} \text{CD} &\leftarrow \text{CDnetNPL}(\textbf{formula} = y ~\tilde{\ } \text{x1} + \text{x2}\,, \text{ contextual} = \text{TRUE}, \\ &\text{Glist} = \text{Network}\,, \text{ optimizer} = \text{"nlm"}) \\ &\text{summary}(\text{CD}) \end{split}
```

- First model of random utility dealing with networks and count outcome.
- The model performs well on count data.
- Two main results.
  - 1 Integer nature of the outcome is important.
  - 2 The endogeneity of the network is important.
- (Next steps) Zeros inflated specification may be required (e.g., smoking).
- $\bullet \ \ \mathtt{CDatanet} \ \ \mathtt{package}, \ \mathtt{https://github.com/ahoundetoungan/CDatanet}.$

$$\label{eq:cd_context} \begin{split} \text{CD} & \leftarrow \text{CDnetNPL}(\textbf{formula} = y ~\tilde{\ } x1 + x2 \,, ~\text{contextual} = \text{TRUE}, \\ & \text{Glist} = \text{Network} \,, ~\text{optimizer} = \text{"nlm"}) \\ & \textbf{summary}(\text{CD}) \end{split}$$

# THANK YOU

# Game: First Order Conditions (focs)

• Belief comparison with the standard Poisson model ( $\lambda = 0$ )



- Flexible model in term of dispersion fitting as the Generalized Poisson model.
  - The Poisson model only allows equidispersion;
  - The Negative Binomial model only allows overdispersion and equidispersion.



# Game: Equilibrium

- Assume  $\gamma = 1$  and **G** is row-normalized; ie  $||\mathbf{G}||_{\infty} = 1$ .
- Is the condition on  $\lambda$  much stronger than  $|\lambda| < 1$ ?
- $C_{1,\sigma_{\varepsilon}}$  (upper bound of  $\lambda$  when  $\gamma=1$  and  $||\mathbf{G}||_{\infty}=1$ ) as a function of  $\sigma_{\varepsilon}$



- The condition  $\sigma_{\varepsilon} < 0.5$  is likely to be violated in practice:
  - max of  $Var(y_i|\psi_i) < 0.34$ ;
  - Only two count choices concentrate more than 84% of observed data.



25 / 26

# Variance of the two-stage estimation

Unconditional variance

$$\mathbf{Var}(\hat{\boldsymbol{\theta}}) = \mathbf{E}_u \left( \mathbf{Var}(\hat{\boldsymbol{\theta}} | \tilde{\boldsymbol{\mu}}) \right) + \mathbf{Var}_u \left( \mathbf{E}(\hat{\boldsymbol{\theta}} | \tilde{\boldsymbol{\mu}}) \right). \tag{12}$$

• Assumption: Let  $\tilde{\mu}_s$  be a draw of  $\tilde{\mu}$  from its posterior distribution and  $\hat{\theta}_s$  be the estimator of  $\theta_0$  associated with  $\tilde{\mu}_s$ .  $\hat{\theta}_s$  is a consistent estimator of  $\mathbf{E}(\hat{\theta}_s|\tilde{\mu}_s)$ .

$$\widehat{AsyVar}\left(\hat{\boldsymbol{\theta}}_{s}\right) = \frac{1}{S} \sum_{s=1}^{S} \mathbf{Var}(\hat{\boldsymbol{\theta}}_{s} | \tilde{\boldsymbol{\mu}}_{s}) + \frac{1}{S-1} \sum_{s=1}^{T} \left(\hat{\boldsymbol{\theta}}_{s} - \hat{\bar{\boldsymbol{\theta}}}\right) \left(\hat{\boldsymbol{\theta}}_{s} - \hat{\bar{\boldsymbol{\theta}}}\right)', \quad (13)$$

where  $\tilde{\mu}_1, \ldots, \tilde{\mu}_S$  are S draws of  $\tilde{\mu}$  with replacement from the population of the 10,000 simulations kept at the first stage, and  $\hat{\theta} = \frac{1}{S} \sum_{s=1}^{S} \hat{\theta}_s$ . In practice, I set S = 5,000.